Caputo fractional approximation by sublinear operators

Authors

  • George A. Anastassiou University of Memphis, USA

DOI:

https://doi.org/10.33993/jnaat472-1135

Keywords:

positive sublinear operators, modulus of continuity, Caputo fractional derivative, Max-product operators
Abstract views: 317

Abstract

Here we consider the approximation of functions by sublinear positive operators with applications to a big variety of Max-Product operators under Caputo fractional differentiability.

Our study is based on our general fractional results about positive sublinear operators. We produce Jackson type inequalities under simple initial conditions. So our approach is quantitative by producing inequalities with their right hand sides involving the modulus of continuity of fractional derivative of the function under
approximation.

Downloads

Download data is not yet available.

References

G. Anastassiou, On Right Fractional Calculus, Chaos, Solitons and Fractals, 42 (2009), pp. 365–376, https://doi.org/10.1016/j.chaos.2008.12.013 DOI: https://doi.org/10.1016/j.chaos.2008.12.013

G. Anastassiou, Fractional Korovkin Theory, Chaos, Solitons and Fractals, 42 (2009), pp. 2080–2094, https://doi.org/10.1016/j.chaos.2009.03.183 DOI: https://doi.org/10.1016/j.chaos.2009.03.183

G. Anastassiou, Approximation by Sublinear Operators, submitted, 2017. 25 Caputo fractional approximation by sublinear operators 113 DOI: https://doi.org/10.1007/s13398-018-0491-2

G. Anastassiou, L. Coroianu, S. Gal, Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind, J. Computational Analysis & Applications, vol. 12 (2010), no. 2 pp. 396–406.

B. Bede, L. Coroianu, S. Gal, Approximation by max-product type operators, Springer, Heidelberg, New York, 2016. DOI: https://doi.org/10.1007/978-3-319-34189-7

R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, Heidelberg, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9

Kai Diethelm, The Analysis of Fractional Differential Equations, Springer, Heidelberg, New York, 2010. DOI: https://doi.org/10.1007/978-3-642-14574-2

A.M.A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz derivatives, Electronic Journal of Theoretical Physics, vol. 3, (2006), no. 12, pp. 81–95.

L. Fejer, Uber Interpolation, Gottingen Nachrichten, (1916), pp. 66–91.

G.S. Frederico, D.F.M. Torres, Fractional Optimal Control in the sense of Caputo and the fractional Noether’s theorem, International Mathematical Forum, vol. 3 (2008), no. 10, pp. 479–493.

G.G. Lorentz, Bernstein Polynomials, Chelsea Publishing Company, New York, NY, 1986, 2nd ed.

T. Popoviciu, Sur l’approximation de fonctions convexes d’order superieur, Mathematica (Cluj), 10 (1935), pp. 49–54.

S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, (Gordon and Breach, Amsterdam, 1993) [English translation from the Russian, Integrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987)]

Downloads

Published

2018-12-31

Issue

Section

Articles

How to Cite

Anastassiou, G. A. (2018). Caputo fractional approximation by sublinear operators. J. Numer. Anal. Approx. Theory, 47(2), 89-113. https://doi.org/10.33993/jnaat472-1135