Caputo fractional approximation by sublinear operators
DOI:
https://doi.org/10.33993/jnaat472-1135Keywords:
positive sublinear operators, modulus of continuity, Caputo fractional derivative, Max-product operatorsAbstract
Here we consider the approximation of functions by sublinear positive operators with applications to a big variety of Max-Product operators under Caputo fractional differentiability.
Our study is based on our general fractional results about positive sublinear operators. We produce Jackson type inequalities under simple initial conditions. So our approach is quantitative by producing inequalities with their right hand sides involving the modulus of continuity of fractional derivative of the function under
approximation.
Downloads
References
G. Anastassiou, On Right Fractional Calculus, Chaos, Solitons and Fractals, 42 (2009), pp. 365–376, https://doi.org/10.1016/j.chaos.2008.12.013 DOI: https://doi.org/10.1016/j.chaos.2008.12.013
G. Anastassiou, Fractional Korovkin Theory, Chaos, Solitons and Fractals, 42 (2009), pp. 2080–2094, https://doi.org/10.1016/j.chaos.2009.03.183 DOI: https://doi.org/10.1016/j.chaos.2009.03.183
G. Anastassiou, Approximation by Sublinear Operators, submitted, 2017. 25 Caputo fractional approximation by sublinear operators 113 DOI: https://doi.org/10.1007/s13398-018-0491-2
G. Anastassiou, L. Coroianu, S. Gal, Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind, J. Computational Analysis & Applications, vol. 12 (2010), no. 2 pp. 396–406.
B. Bede, L. Coroianu, S. Gal, Approximation by max-product type operators, Springer, Heidelberg, New York, 2016. DOI: https://doi.org/10.1007/978-3-319-34189-7
R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, Heidelberg, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
Kai Diethelm, The Analysis of Fractional Differential Equations, Springer, Heidelberg, New York, 2010. DOI: https://doi.org/10.1007/978-3-642-14574-2
A.M.A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz derivatives, Electronic Journal of Theoretical Physics, vol. 3, (2006), no. 12, pp. 81–95.
L. Fejer, Uber Interpolation, Gottingen Nachrichten, (1916), pp. 66–91.
G.S. Frederico, D.F.M. Torres, Fractional Optimal Control in the sense of Caputo and the fractional Noether’s theorem, International Mathematical Forum, vol. 3 (2008), no. 10, pp. 479–493.
G.G. Lorentz, Bernstein Polynomials, Chelsea Publishing Company, New York, NY, 1986, 2nd ed.
T. Popoviciu, Sur l’approximation de fonctions convexes d’order superieur, Mathematica (Cluj), 10 (1935), pp. 49–54.
S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, (Gordon and Breach, Amsterdam, 1993) [English translation from the Russian, Integrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987)]
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 George A. Anastassiou
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.