An infeasible interior point methods for convex quadratic problems

Authors

  • Hayet Roumili University of Setif, Algeria
  • Nawel Boudjellal University of Setif, Algeria

DOI:

https://doi.org/10.33993/jnaat472-1147

Keywords:

Convex quadratic programs, Infeasible interior-point method, Newton step
Abstract views: 316

Abstract

In this paper, we deal with the study and implementation of an infeasible interior point method for convex quadratic problems (CQP). The algorithm uses a Newton step and suitable proximity measure for approximately tracing the central path and guarantees that after one feasibility step, the new iterate is feasible and suciently close to the central path. For its complexity analysis, we reconsider the analysis used by the authors for linear optimisation (LO) and linear complementarity problems (LCP).

We show that the algorithm has the best known iteration bound, namely \(n log (n+1)\).

Finally, to measure the numerical performance of this algorithm, it was tested on convex quadratic and linear problems.

Downloads

Download data is not yet available.

References

M. Achache, M. Goutal, A primal-dual interior point algorithm for convex quadratic programs, Studia Univ. Babes Bolyai Informatica.LVII (2012) no. 1, pp. 48–58.

Zs. Darvay, I.-M. Papp, P.-R. Takacs, An infeasible full-Newton step algorithm for linear optimization with one centering step in major iteration, Studia Univ. Babes-Bolyai Informatica, 59 (2014), pp. 28-45.

G. Gu, M. Zangiabadi, C. Roos, Full Nesterov-Todd step infeasible interior-point methods for symmetric optimization, European J. Oper. Res, 214 (2011) no. 3, pp. 473-484, https://doi.org/10.1016/j.ejor.2011.02.022 DOI: https://doi.org/10.1016/j.ejor.2011.02.022

N.K. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4 (1984) no. 4, pp. 373-395, https://doi.org/10.1007/bf02579150 DOI: https://doi.org/10.1007/BF02579150

H. Mansouri, C. Roos, A simplified O(nL) infeasible interior-point algorithm for linear optimization using full Newton steps, Optim. Methods Softw, 22 (2007) no. 3, pp. 519-530, https://doi.org/10.1080/10556780600816692 DOI: https://doi.org/10.1080/10556780600816692

H. Mansouri, M. Zangiabad, An adaptive infeasible interior-point algorithm with full-Newton step for linear optimization, Optimization, 62 (2013) no. 2, pp. 285-297, https://doi.org/10.1080/02331934.2011.611881 DOI: https://doi.org/10.1080/02331934.2011.611881

H. Mansouri, M. Zangiabadi, M. Arzani, A modified infeasible-interior-point algorithm for linear optimization problems, J. Optim. Theory Appl., 166 (2015) no. 2, pp. 605-618, https://doi.org/10.1007/s10957-015-0719-7 DOI: https://doi.org/10.1007/s10957-015-0719-7

H. Mansouri, M. Zangiabadi, M. Pirhaji, A full-Newton step O(n) infeasible interior-point algorithm for linear complementarity problems, Nonlinear Anal. Real World Appl. 12 (2011) no. 1, pp. 545-561, https://doi.org/10.1016/j.nonrwa.2010.06.039 DOI: https://doi.org/10.1016/j.nonrwa.2010.06.039

C. Roos, A full-Newton step O(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim, 16 (2006) no. 4, pp. 1110-1136, https://doi.org/10.1137/050623917 DOI: https://doi.org/10.1137/050623917

C. Roos, An improved and simplified full-Newton step O(n) infeasible interior-point method for linear optimization, SIAM J. Optim, 25 (2015) no. 1, pp. 102-114, https://doi.org/10.1137/140975462 DOI: https://doi.org/10.1137/140975462

Gy. Sonnevend, An Analytic Center for Polyhedrons and New Classes of Global Algorithms for Linear (Smooth, Convex) Programming, Lecture Notes in Control and Information Sciences, Springer, Berlin, 84 (1985), pp.866-876, https://doi.org/10.1007/bfb0043914 DOI: https://doi.org/10.1007/BFb0043914

G.Q. Wang, Y.Q. Ba, A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization, J. Optim. Theory Appl., 154 (2012) no. 3, pp. 966-985, https://doi.org/10.1007/s10957-012-0013-x DOI: https://doi.org/10.1007/s10957-012-0013-x

G.Q. Wang, Y.Q. Bai, X.Y. Gao, D.Z. Wang, Improved complexity analysis of full Nesterov-Todd step interior point methods for semidefinite optimization, J. Optim. Theory Appl.,165(2014) no. 1, pp. 242-262, https://doi.org/10.1007/s10957-014-0619-2 DOI: https://doi.org/10.1007/s10957-014-0619-2

G.Q. Wang, G. Lesaja, Full Nesterov-Todd step feasible interior-point method for the Cartesian P(*)-SCLCP, Optim. Methods Softw, 28 (2013) no. 3, pp. 600-618, http://doi.org/10.1080/10556788.2013.781600 DOI: https://doi.org/10.1080/10556788.2013.781600

Downloads

Published

January 2, 2025

How to Cite

Roumili, H., & Boudjellal, N. (2018). An infeasible interior point methods for convex quadratic problems. J. Numer. Anal. Approx. Theory, 47(2), 177–186. https://doi.org/10.33993/jnaat472-1147

Issue

Section

Articles