Goldbach partitions and norms of cusp forms

Authors

DOI:

https://doi.org/10.33993/jnaat481-1152

Keywords:

exponential sum, uniform bound, cusp forms, Goldbach partition
Abstract views: 193

Abstract

An integral formula for the Goldbach partitions requires uniform convergence of a complex exponential sum. The dependence of the coefficients of the series is found to be bounded by that of cusp forms. Norms may be defined for these forms on a fundamental domain of a modular group. The relation with the integral formula is found to be sufficient to establish the consistency of the interchange of the integral and the sum, which must remain valid as the even integer $N$ tends to infinity.

Downloads

Download data is not yet available.

References

G. H. Hardy and J. E. Littlewood, Some Problems of ‘Partitio Numerorum’ (V): A Further Contribution ot the Study of Goldbach’s Problem, Proc. London Math. Soc. (2)22(1924) 46-56. https://doi.org/10.1112/plms/s2-22.1.46 DOI: https://doi.org/10.1112/plms/s2-22.1.46

S. Davis, On the Existence of a Non-Zero Lower Bound for the Number of Goldbach Partitions of an Even Integer, Int. J. Math. Mathemat. Sci. (2004) 789-798. https://doi.org/10.1155/s0161171204307295 DOI: https://doi.org/10.1155/S0161171204307295

S. Davis, A Recursion Relation for the Number of Goldbach Partitions of an Even Integer, RFSC-04-07.

H. Weyl, Uber die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916) 313-352. https://doi.org/10.1007/bf01475864 DOI: https://doi.org/10.1007/BF01475864

I. M. Vinogradov, Representation of an Odd Number of a Sum of Three Primes, Doklady Akad. Sciences USSR 15 (1937) 191-294.

L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Dover Publishing, New York, 2006.

L.-K. Hua, On Waring’s Problem, Quart. J. Math. 9 (1938) 199-202. https://doi.org/10.1093/qmath/os-9.1.199 DOI: https://doi.org/10.1093/qmath/os-9.1.199

L. A. Parson, Norms of Integrable Cusp Forms, Proc. Amer. Math. Soc. 104 (1988) 1045-1049. https://doi.org/10.1090/s0002-9939-1988-093 DOI: https://doi.org/10.1090/S0002-9939-1988-0935108-X

Y.-K. Lau, An Omega Result for Supremum Norms of Hecke Eigenforms in the Level Aspect, Sci. China Ser. A: Math. 53 (2010) 223-242. https://doi.org/10.1007/s11425-009-0209-1 DOI: https://doi.org/10.1007/s11425-009-0209-1

B. Schoenberg, Elliptic Modular Functions, Springer-Verlag, New York, 1974. DOI: https://doi.org/10.1007/978-3-642-65663-7

E. Hecke, Uber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936) 664-699. https://doi.org/10.1007/bf01565437 DOI: https://doi.org/10.1007/BF01565437

Ein Summierungverfahren f ̈ur die Riemannsche Zeta-Reihe, Math. Z. 32 (1930) 458- 464. https://doi.org/10.1007/bf01194645 DOI: https://doi.org/10.1007/BF01194645

O. Knill and J. Lesieutre, Analytic Continuation of Dirichlet Series with Almost Periodic Coefficients, Complex Anal. Oper. Theory 6 (2012) 237-255. https://doi.org/10.1007/s11785-010-0064-7 DOI: https://doi.org/10.1007/s11785-010-0064-7

J. Szabados and P. V´ertesi, Interpolation of Functions, World Scientific, Singapore, 1990. DOI: https://doi.org/10.1142/0861

Downloads

Published

2019-09-08

How to Cite

Davis, S. B. (2019). Goldbach partitions and norms of cusp forms. J. Numer. Anal. Approx. Theory, 48(1), 16–31. https://doi.org/10.33993/jnaat481-1152

Issue

Section

Articles