Shape preserving properties and monotonicity properties of the sequences of Choquet type integral operators
DOI:
https://doi.org/10.33993/jnaat472-1154Keywords:
monotone and submodular set function, Choquet integral, Bernstein-Kantorovich-Choquet polynomials, Bernstein-Durrmeyer-Choquet polynomial, Szasz-Kantorovich-Choquet operator, Baskakov-Kantorovich-Choquet operator, monotonicity, convexity, shape preserving properties, monotone sequencesAbstract
In this paper, for the univariate Bernstein-Kantorovich-Choquet, Szasz-Kantorovich-Choquet, Baskakov-Kantorovich-Choquet and Bernstein-Durrmeyer-Choquet operators written in terms of the Choquet integrals with respect to monotone and submodular set functions, we study the preservation of the monotonicity and convexity of the approximated functions and the monotonicity of some approximation sequences.
Downloads
References
O. Agratini, Approximation by Linear Operators(Romanian), Cluj University Press, Cluj-Napoca, 2000.
F. Altomare, M. Cappelletti Montano, V. Leonessa, On a generalization of Szasz-Mirakjan-Kantorovich operators , Results Math., 63 (2013), 837-863, https://doi.org/10.1007/s00025-012-0236-z DOI: https://doi.org/10.1007/s00025-012-0236-z
P.L. Butzer, On the extensions of Bernstein polynomials to the infinite interval , Proc. Amer. Math. Soc., 5 (1954) 547-553, https://doi.org/10.1090/S0002-9939-1954-0063483-7 DOI: https://doi.org/10.1090/S0002-9939-1954-0063483-7
G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble), 5 (1954) 131-295, https://doi.org/10.5802/aif.53 DOI: https://doi.org/10.5802/aif.53
D. Denneberg, Non-Additive Measure and Integral, Kluwer Academic Publisher, Dordrecht, 1994, https://doi.org/10.1007/978-94-017-2434-0 DOI: https://doi.org/10.1007/978-94-017-2434-0
Z. Ditzian, V. Totik, Moduli of Smoothness, Springer-Verlag, New York, 1987, https://doi.org/10.1007/978-1-4612-4778-4 DOI: https://doi.org/10.1007/978-1-4612-4778-4
S. G. Gal, Approximation by Choquet integral operators, Ann. Mat. Pura Appl., 195 (2016), No. 3, 881-896, https://doi.org/10.1007/s10231-015-0495-x DOI: https://doi.org/10.1007/s10231-015-0495-x
S. G. Gal, Uniform and pointwise quantitative approximation by Kantorovich-Choquet type integral operators with respect to monotone and submodular set functions, Mediterr. J. Math., 14 (2017), no. 5, Art. 205, 12 pp., https://doi.org/10.1007/s00009-017-1007-6 DOI: https://doi.org/10.1007/s00009-017-1007-6
S. G. Gal, B. D. Opris, Uniform and pointwise convergence of Bernstein-Durrmeyer operators with respect to monotone and submodular set functions, J. Math. Anal. Appl., 424 (2015), 1374-1379, https://doi.org/10.1016/j.jmaa.2014.12.012 DOI: https://doi.org/10.1016/j.jmaa.2014.12.012
S. G. Gal, S. Trifa, Quantitative estimates in uniform and pointwise approximation by Bernstein-Durrmeyer-Choquet operators, Carpath. J. Math., 33 (2017), 49-58, https://www.jstor.org/stable/90003708 DOI: https://doi.org/10.37193/CJM.2017.01.06
S. G. Gal, S. Trifa, Quantitative estimates in Lp-approximation by Bernstein-Durrmeyer-Choquet operators with respect to distorted Borel measures, Results Math., 72 (2017), no. 3, 1405-1415, https://doi.org/10.1007/s00025-017-0759-4 DOI: https://doi.org/10.1007/s00025-017-0759-4
L.V. Kantorovich, Sur certains developpements suivant les polynomes de la forme de S. Bernstein, I, II , C.R. Acad. Sci. URSS, (1930), 563-568, 595-600.
G.G. Lorentz, Approximation of Functions, 2nd edn., Chelsea Publishing Company, New York, 1986.
G. Mastroianni, Su una classe di operatori lineari e pozitivi, Rend. Accad. Scien. Fis. Mat. Napoli, Serie iV, 48 (1980), Anno. CXX, 217-235.
D.D. Stancu, Approximation of functions by a new class of linear polynomial operator, Rev. Roum. Math. Pures Appl., 13 (1968), No. 8, 1173-1194.
D.D. Stancu, On the monotonicity of the sequence formed by the first order derivatives of the Bernstein polynomials, Math. Zeitschr., 98 (1967), 46-51, https://doi.org/10.1007/BF01116567 DOI: https://doi.org/10.1007/BF01116567
V. Totik, An interpolation theorem and its application to positive operators, Pacific J. Math., 111 (1984), 447-481, https://projecteuclid.org/euclid.pjm/1102710581 DOI: https://doi.org/10.2140/pjm.1984.111.447
Z. Wang, G. J. Klir, Generalized Measure Theory, Springer, New York, 2009, https://doi.org/10.1007/978-0-387-76852-6 DOI: https://doi.org/10.1007/978-0-387-76852-6
Published
Issue
Section
License
Copyright (c) 2019 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.