Geometric convergence rates for cardinal spline subdivision with general integer arity

Authors

  • Johan de Villiers Department of Mathematical Sciences, Mathematics Division, Stellenbosch University, South Africa
  • Mpafereleni Rejoyce Gavhi-Molefe African Institute for Mathematical Sciences, South Africa https://orcid.org/0000-0001-5243-6429

DOI:

https://doi.org/10.33993/jnaat481-1164

Keywords:

subdivision, arity, refinable functions, convergence rates, cardinal spline, parametric curves
Abstract views: 231

Abstract

A rigorous convergence analysis is presented for arbitrary order cardinal spline subdivision with general integer arity, for which the binary case, with arity two, is a well-studied subject. Explicit geometric convergence rates are derived, and particular attention is devoted to the rendering of cardinal spline graphs and parametric curves.

Downloads

Download data is not yet available.

References

S. S. Siddiqi and M. Younis, The m-point quaternary approximating subdivision schemes, American Journal of Computational Mathematics, 3 (2013) no. 1, pp. 6–10, http://dx.doi.org/10.4236/ajcm.2013.31A002 DOI: https://doi.org/10.4236/ajcm.2013.31A002

G. Munting, Symbols and exact regularity of symmetric pseudo-splines of any arity, Bit Numerical Mathematics, 57 (2017) no. 3, pp. 867–900,https://doi.org/10.1007/s10543-017-0656-y DOI: https://doi.org/10.1007/s10543-017-0656-y

M. Asghar and G. Mustafa, Family of a-ary univariate subdivision schemes generated by Laurent Polynomial , Mathematical Problems in Engineering, 19 (2018), pp. 1–11,https://doi.org/10.1155/2018/7824279 DOI: https://doi.org/10.1155/2018/7824279

K. P. Ko, B.-G. Lee and G. J. Yoon, A ternary 4-point approximating subdivision scheme, Applied Mathematics and Computation, 190 (2007) no. 2, pp. 1563–1573, https://doi.org/10.1016/j.amc.2007.02.032 DOI: https://doi.org/10.1016/j.amc.2007.02.032

G. Mustafa and F. Khan, A new 4-point quaternary approximating subdivision scheme, Abstract and Applied Analysis, 2009 (2009) no. 2, pp. 1–14, https://doi.org/10.1155/2009/301967 DOI: https://doi.org/10.1155/2009/301967

M. Marsden, An identity for spline functions with applications to variation-diminishing spline approximation, J. Approx. Theory, 3 (1970) no. 1, pp. 7–49, https://doi.org/10.1016/0021-9045(70)90058-4 DOI: https://doi.org/10.1016/0021-9045(70)90058-4

A. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93 (1991), pp. 1–185 DOI: https://doi.org/10.1090/memo/0453

C. Chui and J. de Villiers, Wavelet Subdivision Methods: GEMS for Rendering Curves and Surfaces, CRC Press, Boca Raton, FL, (2010), https://doi.org/10.1201/b13589 DOI: https://doi.org/10.1201/b13589

M. A. Sabin, Analysis and Design of Univariate Subdivision Schemes, Springer Berlin Heidelberg, (2010), https://doi.org/10.1007/978-3-642-13648-1 DOI: https://doi.org/10.1007/978-3-642-13648-1

C. Conti and K. Hormann, Polynomial reproduction for univariate subdivision schemes of any arity, J. Approx. Theory, 163 (2011) no. 4, pp. 413–437, https://doi.org/10.1016/j.jat.2010.11.002 DOI: https://doi.org/10.1016/j.jat.2010.11.002

N. Dyn, J. A. Gregory and D. Levin, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx., 7 (1991) no. 1, pp. 127–147, https://doi.org/10.1007/bf01888150 DOI: https://doi.org/10.1007/BF01888150

J. Warren and H. Weimer, Subdivision Methods for Geometric Design: A Constructive Approach, Morgan Kaufmann Publishers Inc., (2001), https://doi.org/10.1016/b978-1-55860-446-9.x5000-5 DOI: https://doi.org/10.1016/B978-1-55860-446-9.X5000-5

T. DeRose, M. Kass and T. Truong, Subdivision surfaces in character animation, Proceedings of the 25th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’98, (1998), https://doi.org/10.1145/280814.280826 DOI: https://doi.org/10.1145/280814.280826

L. Gori, F. Pitolli and E. Santi, Refinable ripplets with dilation 3, Jaen Journal on Approximation, 3 (2011) no. 2, pp. 173–191,

L. Gori, F. Pitolli and E. Santi, On a class of shape-preserving refinable functions with dilation 3, Journal of Computational and Applied Mathematics, 245 (2013), pp. 62–74, https://doi.org/10.1016/j.cam.2012.12.010 DOI: https://doi.org/10.1016/j.cam.2012.12.010

M. F. Hassan and N. A. Dodgson, Ternary and three-point univariate subdivision schemes, In A. Cohen, J.-L. Merrien, and L. L. Schumaker (Eds.), Curve and Surface fitting: Saint-Malo 2002, Nashboro Press, (2003), pp. 199–208.

R. Q. Jia and B. Han, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal., 29 (1998) no. 5, pp. 1177–1199, https://doi.org/10.1137/s0036141097294032 DOI: https://doi.org/10.1137/S0036141097294032

R. F. Riesenfeld, On Chaikin’s algorithm, Computer Graphics and Image Processing, 4 (1975), pp. 304–310, https://doi.org/10.1016/0146-664X(75)90017-9 DOI: https://doi.org/10.1016/0146-664X(75)90017-9

K. Rehan and S. Siddiqi, A family of ternary subdivision schemes for curves, Applied Mathematics and Computation, 270 (2015), pp. 114–123,https://doi.org/10.1016/j.amc.2015.08.024 DOI: https://doi.org/10.1016/j.amc.2015.08.024

H. Zheng, M. HU and G. Peng, p-ary subdivision generalizing B-splines, Second International Conference on Computer and Electrical Engineering, (2009), https://doi.org/10.1109/ICCEE.2009.204 DOI: https://doi.org/10.1109/ICCEE.2009.204

T. Popoviciu, Sur quelques proprietes des fonctions d’une ou de deux variables reel les, Mathematica, 8 (1934), pp. 1–85

T. Popoviciu, Sur le prolongement des fonctions convexes d’ordre superieur, Bull. Math. Soc. Roumaine des Sc., 36 (1934), pp. 75–108, https://www.jstor.org/stable/43769764

I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Part A: on the problem of smoothing or graduation, a first class of analytic approximation formulas, Quart. Appl. Math., 4 (1946), pp. 45–99, https://doi.org/10.1090/qam/15914 DOI: https://doi.org/10.1090/qam/15914

I.J. Schoenberg, On Polya frequency functions III. The positivity of translation determinants with an application to the interpolation problem by spline curves, Trans. Amer. Math. Soc., 74 (1953), pp. 246–259,https://doi.org/10.1007/978-1-4899-0433-1_16 DOI: https://doi.org/10.1090/S0002-9947-1953-0053177-X

Downloads

Published

January 3, 2025

How to Cite

de Villiers, J., & Gavhi-Molefe, M. R. (2019). Geometric convergence rates for cardinal spline subdivision with general integer arity. J. Numer. Anal. Approx. Theory, 48(1), 32–61. https://doi.org/10.33993/jnaat481-1164

Issue

Section

Articles