Generalized growth and approximation errors of entire harmonic functions in \(R^n\), \(n \geq 3\)
DOI:
https://doi.org/10.33993/jnaat472-1166Keywords:
approximation errors, entire harmonic functions, generalized order, generalized type, ball of radius rAbstract
In this paper we study the continuation of harmonic functions in the ball to the entire harmonic functions in space \(\mathbb{R}^n\), \(n\geq 3\).
The generalized order introduced by M.N. Seremeta has been used to characterize the growth of such functions. Moreover, the generalized order, generalized lower order and generalized type have been characterized in terms of harmonic polynomial approximation errors.
Our results apply satisfactorily for slow growth.
Downloads
References
A.V. Batyrev, On the problem of best approximation of an analytic function by polynomials, Dokl. Akad. Nauk. SSR [Soviet Math. Dokl.], 26 (1951), pp. 173–175.
A. Giroux, Approximation of entire functions over bounded domains, J. Approx. Theory, 28 (1980), pp. 45–53 https://doi.org/10.1016/0021-9045(80)90103-3 DOI: https://doi.org/10.1016/0021-9045(80)90103-3
I.I. Ibragimov, N. Shikhaliev, On the best mean approximation of analytic functions in the space Lp, Trudy Inst. Mat. Mekh. Azreb. SSR, pp. 84–86 (1977).
N. Juhong, C. Qing, Approximation of entire functions of slow growth, Intern. J. Pure and Appl. Math. 113 (2017) no.3, pp. 399–413. DOI: https://doi.org/10.12732/ijpam.v113i3.3
G.P. Kapoor, A. Nautiyal, Polynomial approximation of an entire function of slow growth, J. Approx. Theory, 32 (1981), pp. 64–75, https://doi.org/10.1016/0021-9045(81)90022-8 DOI: https://doi.org/10.1016/0021-9045(81)90022-8
H.S. Kasana, D. Kumar, On approximation and interpolation of entire functions with index pair (p, q), Publicacions Matematique (Spain), 38 (1994), no. 4, pp. 681–689. DOI: https://doi.org/10.5565/PUBLMAT_38294_01
A.R. Reddy, A contribution to best approximation in L2-norm, J. Approx. Theory, 11 (1) (1974), pp. 110–117, https://doi.org/10.1016/0021-9045(74)90022-7 DOI: https://doi.org/10.1016/0021-9045(74)90022-7
M.N. Seremeta, On the connection between the growth of the maximum modulus of an entire function and the moduli of the coefficients of its power series expansions, Am. Math. Soc. Transl. Ser. 2, 88 (1970), pp. 291–301, https://doi.org/10.1090/trans2/088/11 DOI: https://doi.org/10.1090/trans2/088/11
S.M. Shah, Polynomial approximation of an entire function and generalized orders, J. Approx. Theory, 19 (4) (1977), pp. 315–324, https://doi.org/10.1016/0021-9045(77)90095-8 DOI: https://doi.org/10.1016/0021-9045(77)90095-8
Y. Stein, H. Veis, Vvedenye v harmonycheskyi analyz na evklydovykh prostranstvakh, Moscow Myr., 336 (1974).
A.F. Tyman, V.N. Trofymov, Vvedenye v teoryih harmonycheskykh funktsii, Moscow Nauka, 208 (1968).
G. Valiron, Lectures on the general theory of integral functions, Chelsea Publ. Co., New York, 1949.
S.B. Vakarchuk, On the best polynomial approximation of functions analytic in the unit disc, Ukrain Mat. Zhurn., 42 (1990) 6, pp. 838–843. DOI: https://doi.org/10.1007/BF01058926
R.S. Varga, On an extension of a result of S.N. Bernstein, J. Approx. Theory, 1 (1968), pp. 176–179, https://doi.org/10.1016/0021-9045(68)90020-8 DOI: https://doi.org/10.1016/0021-9045(68)90020-8
O. Veselovska, K. Drohomyretska, L. Kolyasa, Criterion of the continuation of harmonic functions in the ball of n-dimensional space and representation of the generalized orders of the entire harmonic functions in Rn in terms of approximation errors, Math. Cybernetics-Applied Aspects (2017), pp. 43–49, https://doi.org/10.15587/1729-4061.2017.108387 DOI: https://doi.org/10.15587/1729-4061.2017.108387
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.