Approximate solution of nonlinear hyperbolic equations with homogeneous jump conditions

Authors

  • Matthew Olayiwola Adewole Mountain Top University, Prayer City, Ogun State, Nigeria

DOI:

https://doi.org/10.33993/jnaat482-1175

Keywords:

Almost optimal, nonlinear hyperbolic equation, linearized backward difference, partial differential equations
Abstract views: 413

Abstract

We present the error analysis of class of second order nonlinear hyperbolic interface problem where the spatial and time discretizations are based on finite element method and linearized backward difference scheme respectively.

Both semi discrete and fully discrete schemes are analyzed with the assumption that the interface is arbitrary but smooth.

Almost optimal convergence rate in \(H^1(\Omega)\)-norm is obtained.

Examples are given to support the theoretical result.

Downloads

Download data is not yet available.

References

R.A. Adams, Sobolev spaces. Academic Press, New York-London, 65 (1975).

M.O. Adewole, Almost optimal convergence of FEM-FDM for a linear parabolic interface problem. Electron. Trans. Numer. Anal., 46 (2017), pp. 337-358

M.O. Adewole, On finite element method for linear hyperbolic interface problems. Journal of The Nigerian Mathematical Society, 37 (2018) no. 1, pp. 41-55,

M.O. Adewole, Approximation of linear hyperbolic interface problems on finite element: Some new estimates. Appl. Math. Comput., 349 (2019), pp. 245-257, https://doi.org/10.1016/j.amc.2018.12.047 DOI: https://doi.org/10.1016/j.amc.2018.12.047

M.O. Adewole and V.F. Payne, Linearized four-step implicit scheme for nonlinear parabolic interface problems. Turkish J. Math., 42 (2018) no. 6, pp. 3034-3049, https://doi.org/10.3906/mat-1801-96 DOI: https://doi.org/10.3906/mat-1801-96

I. Babuška, The finite element method for elliptic equations with discontinuous coefficients. Computing, 5 (1970), pp. 207-213, https://doi.org/10.1007/BF02248021 DOI: https://doi.org/10.1007/BF02248021

G.A. Baker, Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal., 13 (1976) no. 4, pp. 564-576, https://doi.org/10.1137/0713048 DOI: https://doi.org/10.1137/0713048

G.A. Baker and J.H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO. Analyse Numérique, 13 (1979) no. 2, pp. 75-100 DOI: https://doi.org/10.1051/m2an/1979130200751

G.A. Baker and V.A. Dougalis, On the L^{?}-convergence of Galerkin approximations for second-order hyperbolic equations. Math. Comp., 34 (1980), pp. 401-424, https://doi.org/10.2307/2006093 DOI: https://doi.org/10.1090/S0025-5718-1980-0559193-3

L. Brekhovskikh, Waves in Layered Media. Academic Press, New York, second edition, (1980). Trans. from the Russian, Moscow : Nauka, 1973 DOI: https://doi.org/10.1016/B978-0-12-130560-4.50005-2

S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, Springer, New York, third edition, 15 (2008), https://doi.org/10.1007/978-0-387-75934-0 DOI: https://doi.org/10.1007/978-0-387-75934-0

P.G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam-New York-Oxford, Studies in Mathematics and its Applications, 4 (1978).

L. Debnath, Nonlinear partial differential equations for scientists and engineers. Birkhäuser/Springer, New York, third edition, (2012), https://doi.org/10.1007/978-0-8176-8265-1 DOI: https://doi.org/10.1007/978-0-8176-8265-1_1

B. Deka. A priori L^{?}(L²) error estimates for finite element approximations to the wave equation with interface. Appl. Numer. Math., 115 (2017), pp. 142—159, https://doi.org/10.1016/j.apnum.2017.01.004 DOI: https://doi.org/10.1016/j.apnum.2017.01.004

B. Deka and T. Ahmed, Convergence of finite element method for linear second-order wave equations with discontinuous coefficients. Numer. Methods Partial Differential Equations, 29 (2013) no. 5, pp. 1522-1542, https://doi.org/10.1002/num.21765 DOI: https://doi.org/10.1002/num.21765

B. Deka and R.K. Sinha, Finite element methods for second order linear hyperbolic interface problems. Appl. Math. Comput., 218 (2012) no. 22, pp. 10922-10933, https://doi.org/10.1016/j.amc.2012.04.055 DOI: https://doi.org/10.1016/j.amc.2012.04.055

T. Dupont, L2-estimates for Galerkin methods for second order hyperbolic equations. SIAM J. Numer. Anal., 10 (1973), pp. 880-889, https://doi.org/10.1137/0710073 DOI: https://doi.org/10.1137/0710073

Evans1998 : L.C. Evans, Partial differential equations, Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 19 (1998).

E.H. Georgoulis, O. Lakkis, and C. Makridakis, A posteriori L^{?}(L²)-error bounds for finite element approximations to the wave equation. IMA J. Numer. Anal., 33 (2013) no. 4, pp. 1245-1264, https://dx.doi.org/10.1093/imanum/drs057 DOI: https://doi.org/10.1093/imanum/drs057

F. Hecht, New development in freefem++. J. Numer. Math., 20 (2012) no. 3-4, pp. 251-265, https://doi.org/10.1515/jnum-2012-0013 DOI: https://doi.org/10.1515/jnum-2012-0013

R. B. Kellogg, Singularities in interface problems. Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, (1971), pp. 351-400. DOI: https://doi.org/10.1016/B978-0-12-358502-8.50015-3

S. Larsson and V. Thomée, Partial differential equations with numerical methods, Texts in Applied Mathematics, Springer-Verlag, Berlin, 45 (2003).

A.W. Leissa and M.S. Qatu, Vibration of Continuous Systems. McGraw-Hill Companies Inc., first edition, (2011).

S.S. Rao, Vibration of Continuous Systems. John Wiley & Sons, Inc., Hoboken, New Jersey, first edition, (2007)

J. Rauch, On convergence of the finite element method for the wave equation. SIAM J. Numer. Anal., 22 (1985) no. 2, pp. 245-249, https://doi.org/10.1137/0722015 DOI: https://doi.org/10.1137/0722015

C. Yang, Convergence of a linearized second-order BDF-FEM for nonlinear parabolic interface problems. Comput. Math. Appl., 70 (2015) no. 3, pp. 265-281, https://doi.org/10.1016/j.camwa.2015.05.006 DOI: https://doi.org/10.1016/j.camwa.2015.05.006

Downloads

Published

2019-12-31

How to Cite

Adewole, M. O. (2019). Approximate solution of nonlinear hyperbolic equations with homogeneous jump conditions. J. Numer. Anal. Approx. Theory, 48(2), 122–136. https://doi.org/10.33993/jnaat482-1175

Issue

Section

Articles