Inequalities for the Finite Hilbert Transform of convex functions

Authors

DOI:

https://doi.org/10.33993/jnaat482-1177

Keywords:

Finite Hilbert Transform, convex functions
Abstract views: 204

Abstract

In this paper we obtain some new inequalities for the finite Hilbert transform of convex functions.

Applications for some particular functions of interest are provided as well.

Downloads

Download data is not yet available.

References

N.M. Dragomir, S.S. Dragomir, P.M. Farrell, Some inequalities for the finite Hilbert transform, Inequality Theory and Applications, vol. I, pp. 113–122, Nova Sci. Publ., Huntington, NY, 2001.

N.M. Dragomir, S.S. Dragomir, P.M. Farrell, Approximating the finite Hilbert transform via trapezoid type inequalities, Comput. Math. Appl., 43 (2002) nos. 10–11, pp. 1359–1369. https://doi.org/10.1016/s0898-1221(02)00104-9 DOI: https://doi.org/10.1016/S0898-1221(02)00104-9

N.M. Dragomir, S.S. Dragomir, P.M. Farrell, G.W. Baxter, On some new estimates of the finite Hilbert transform, Libertas Math., 22 (2002), 65–75.

N.M. Dragomir, S.S. Dragomir, P.M. Farrell, G.W. Baxter, A quadrature rule for the finite Hilbert transform via trapezoid type inequalities, J. Appl. Math. Comput., 13 (2003) nos. 1–2, 67–84. https://doi.org/10.1007/bf02936075 DOI: https://doi.org/10.1007/BF02936075

N.M. Dragomir, S.S. Dragomir, P.M. Farrell, G.W. Baxter, A quadrature rule for the finite Hilbert transform via midpoint type inequalities, Fixed point theory and applications. vol. 5, pp. 11–22, Nova Sci. Publ., Hauppauge, NY, 2004.

S.S. Dragomir, Inequalities for the Hilbert transform of functions whose derivatives are convex, J. Korean Math. Soc., 39 (2002) no. 5, pp. 709–729. https://doi.org/10.4134/jkms.2002.39.5.709 DOI: https://doi.org/10.4134/JKMS.2002.39.5.709

S.S. Dragomir, Approximating the finite Hilbert transform via an Ostrowski type inequality for functions of bounded variation, J. Inequal. Pure Appl. Math., 3 (2002) no. 4, art. 51, 19 pp.

S.S. Dragomir, Approximating the finite Hilbert transform via Ostrowski type inequalities for absolutely continuous functions, Bull. Korean Math. Soc., 39 (2002) no. 4, pp. 543–559. https://doi.org/10.4134/bkms.2002.39.4.543 DOI: https://doi.org/10.4134/BKMS.2002.39.4.543

S.S. Dragomir, Some inequalities for the finite Hilbert transform of a product, Commun. Korean Math. Soc., 18 (2003) no. 1, pp. 39–57. https://doi.org/10.4134/ckms.2003.18.1.039 DOI: https://doi.org/10.4134/CKMS.2003.18.1.039

S.S. Dragomir, Sharp error bounds of a quadrature rule with one multiple node for the finite Hilbert transform in some classes of continuous differentiable functions, Taiwanese J. Math., 9 (2005) no. 1, pp. 95–109. https://doi.org/10.11650/twjm/1500407748 DOI: https://doi.org/10.11650/twjm/1500407748

S.S. Dragomir, Inequalities and approximations for the Finite Hilbert transform: a survey of recent results, Preprint RGMIA Res. Rep. Coll., 21 (2018), art. 30, 90 pp. DOI: https://doi.org/10.20944/preprints201803.0017.v1

D. Gakhov, Boundary Value Problems (English translation), Pergamon Press, Oxford, 1966. DOI: https://doi.org/10.1016/B978-0-08-010067-8.50007-4

W. Liu, X. Gao, Approximating the finite Hilbert transform via a companion of Ostrowski’s inequality for function of bounded variation and applications, Appl. Math. Comput., 247 (2014), pp. 373–385. https://doi.org/10.1016/j.amc.2014.08.099 DOI: https://doi.org/10.1016/j.amc.2014.08.099

W. Liu, X. Gao, Y. Wen, Approximating the finite Hilberttransform via some companions of Ostrowski’s inequalities, Bull. Malays. Math. Sci. Soc., 39 (2016) no. 4, pp. 1499–1513. https://doi.org/10.1007/s40840-015-0251-9 DOI: https://doi.org/10.1007/s40840-015-0251-9

W. Liu, N. Lu, Approximating the finite Hilbert transform via Simpson type inequalities and applications, Sci. Bull. Ser. A Appl. Math. Phys., Politehn. Univ. Bucharest, 77 (2015) no. 3, 107–122.

S.G. Mikhlin, S. Prossdorf, Singular Integral Operators (English translation), Springer Verlag, Berlin, 1986. DOI: https://doi.org/10.1007/978-3-642-61631-0

S. Wang, X. Gao, N. Lu, A quadrature formula in approximating the finite Hilbert transform via perturbed trapezoid type inequalities, J. Comput. Anal. Appl., 22 (2017) no. 2, pp. 239–246.

S. Wang, N. Lu, X. Gao, A quadrature rule for the finite Hilberttransform via Simpson type inequalities and applications, J. Comput. Anal. Appl., 22 (2017) no. 2, pp. 229–238.

Downloads

Published

2019-12-31

How to Cite

Dragomir, S. S. (2019). Inequalities for the Finite Hilbert Transform of convex functions. J. Numer. Anal. Approx. Theory, 48(2), 148–158. https://doi.org/10.33993/jnaat482-1177

Issue

Section

Articles