Inequalities for the Finite Hilbert Transform of convex functions
DOI:
https://doi.org/10.33993/jnaat482-1177Keywords:
Finite Hilbert Transform, convex functionsAbstract
In this paper we obtain some new inequalities for the finite Hilbert transform of convex functions.
Applications for some particular functions of interest are provided as well.
Downloads
References
N.M. Dragomir, S.S. Dragomir, P.M. Farrell, Some inequalities for the finite Hilbert transform, Inequality Theory and Applications, vol. I, pp. 113–122, Nova Sci. Publ., Huntington, NY, 2001.
N.M. Dragomir, S.S. Dragomir, P.M. Farrell, Approximating the finite Hilbert transform via trapezoid type inequalities, Comput. Math. Appl., 43 (2002) nos. 10–11, pp. 1359–1369. https://doi.org/10.1016/s0898-1221(02)00104-9 DOI: https://doi.org/10.1016/S0898-1221(02)00104-9
N.M. Dragomir, S.S. Dragomir, P.M. Farrell, G.W. Baxter, On some new estimates of the finite Hilbert transform, Libertas Math., 22 (2002), 65–75.
N.M. Dragomir, S.S. Dragomir, P.M. Farrell, G.W. Baxter, A quadrature rule for the finite Hilbert transform via trapezoid type inequalities, J. Appl. Math. Comput., 13 (2003) nos. 1–2, 67–84. https://doi.org/10.1007/bf02936075 DOI: https://doi.org/10.1007/BF02936075
N.M. Dragomir, S.S. Dragomir, P.M. Farrell, G.W. Baxter, A quadrature rule for the finite Hilbert transform via midpoint type inequalities, Fixed point theory and applications. vol. 5, pp. 11–22, Nova Sci. Publ., Hauppauge, NY, 2004.
S.S. Dragomir, Inequalities for the Hilbert transform of functions whose derivatives are convex, J. Korean Math. Soc., 39 (2002) no. 5, pp. 709–729. https://doi.org/10.4134/jkms.2002.39.5.709 DOI: https://doi.org/10.4134/JKMS.2002.39.5.709
S.S. Dragomir, Approximating the finite Hilbert transform via an Ostrowski type inequality for functions of bounded variation, J. Inequal. Pure Appl. Math., 3 (2002) no. 4, art. 51, 19 pp.
S.S. Dragomir, Approximating the finite Hilbert transform via Ostrowski type inequalities for absolutely continuous functions, Bull. Korean Math. Soc., 39 (2002) no. 4, pp. 543–559. https://doi.org/10.4134/bkms.2002.39.4.543 DOI: https://doi.org/10.4134/BKMS.2002.39.4.543
S.S. Dragomir, Some inequalities for the finite Hilbert transform of a product, Commun. Korean Math. Soc., 18 (2003) no. 1, pp. 39–57. https://doi.org/10.4134/ckms.2003.18.1.039 DOI: https://doi.org/10.4134/CKMS.2003.18.1.039
S.S. Dragomir, Sharp error bounds of a quadrature rule with one multiple node for the finite Hilbert transform in some classes of continuous differentiable functions, Taiwanese J. Math., 9 (2005) no. 1, pp. 95–109. https://doi.org/10.11650/twjm/1500407748 DOI: https://doi.org/10.11650/twjm/1500407748
S.S. Dragomir, Inequalities and approximations for the Finite Hilbert transform: a survey of recent results, Preprint RGMIA Res. Rep. Coll., 21 (2018), art. 30, 90 pp. DOI: https://doi.org/10.20944/preprints201803.0017.v1
D. Gakhov, Boundary Value Problems (English translation), Pergamon Press, Oxford, 1966. DOI: https://doi.org/10.1016/B978-0-08-010067-8.50007-4
W. Liu, X. Gao, Approximating the finite Hilbert transform via a companion of Ostrowski’s inequality for function of bounded variation and applications, Appl. Math. Comput., 247 (2014), pp. 373–385. https://doi.org/10.1016/j.amc.2014.08.099 DOI: https://doi.org/10.1016/j.amc.2014.08.099
W. Liu, X. Gao, Y. Wen, Approximating the finite Hilberttransform via some companions of Ostrowski’s inequalities, Bull. Malays. Math. Sci. Soc., 39 (2016) no. 4, pp. 1499–1513. https://doi.org/10.1007/s40840-015-0251-9 DOI: https://doi.org/10.1007/s40840-015-0251-9
W. Liu, N. Lu, Approximating the finite Hilbert transform via Simpson type inequalities and applications, Sci. Bull. Ser. A Appl. Math. Phys., Politehn. Univ. Bucharest, 77 (2015) no. 3, 107–122.
S.G. Mikhlin, S. Prossdorf, Singular Integral Operators (English translation), Springer Verlag, Berlin, 1986. DOI: https://doi.org/10.1007/978-3-642-61631-0
S. Wang, X. Gao, N. Lu, A quadrature formula in approximating the finite Hilbert transform via perturbed trapezoid type inequalities, J. Comput. Anal. Appl., 22 (2017) no. 2, pp. 239–246.
S. Wang, N. Lu, X. Gao, A quadrature rule for the finite Hilberttransform via Simpson type inequalities and applications, J. Comput. Anal. Appl., 22 (2017) no. 2, pp. 229–238.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.