Extended convergence of two-step iterative methods for solving equations with applications
DOI:
https://doi.org/10.33993/jnaat532-1178Keywords:
Banach space, restricted convergence region, convergence of iterative method.Abstract
The convergence of two-step iterative methods of third and fourth order of convergence are studied under weaker hypotheses than in earlier works using our new idea of the restricted convergence region. This way, we obtain a finer semilocal and local convergence analysis, and under the same or weaker hypotheses. Hence, we extend the applicability of these methods in cases not covered before. Numerical examples are used to compare our results favorably to earlier ones.
Downloads
References
S. Amat, S. Busquier, J.M. Gutierrez, Geometric constructions of iterative functions to solve nonlinear equations, J. Comput. Appl. Math., 157 (2003), pp. 197-205. https://doi.org/10.1016/S0377-0427(03)00420-5 DOI: https://doi.org/10.1016/S0377-0427(03)00420-5
S. Amat, S. Busquier, Third-order iterative methods under Kantorovich conditions, J. Math. Anal. Appl., 336 (2007), pp. 243-261. https://doi.org/10.1016/j.jmaa.2007.02.052 DOI: https://doi.org/10.1016/j.jmaa.2007.02.052
S. Amat, S. Busquier, M. Negra, Adaptive approximation of nonlinear operators, Numer. Funct. Anal. Optim., 25 (2004), pp. 397-405. DOI: https://doi.org/10.1081/NFA-200042628
S. Amat, S. Busquier, A. Alberto Magrenan, Improving the dynamics of Steffensen-type methods, Appl. Math. Inf. Sci., 9 (2015) 5:2403. DOI: https://doi.org/10.1007/978-3-319-39228-8_2
I.K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Math., 169 (2004), pp. 315-332. https://doi.org/10.1016/j.cam.2004.01.029 DOI: https://doi.org/10.1016/j.cam.2004.01.029
I.K. Argyros, A semi-local convergence analysis for directional Newton methods, Math. Comput., 80 (2011), pp. 327-343. https://doi.org/10.1090/S0025-5718-2010-02398-1 DOI: https://doi.org/10.1090/S0025-5718-2010-02398-1
I.K. Argyros, D. Gonzalez, Extending the applicability of Newton’s method for k-Frechet differentiable operators in Banach spaces, Appl. Math. Comput., 234 (2014), pp. 167-178. https://doi.org/10.1016/j.amc.2014.02.046 DOI: https://doi.org/10.1016/j.amc.2014.02.046
I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method, J. Complexity, 28 (2012), pp. 364-387. https://doi.org/10.1016/j.jco.2011.12.003 DOI: https://doi.org/10.1016/j.jco.2011.12.003
I.K. Argyros, A.A. Magrenan, Iterative Methods and Their Dynamics with Applications: A Contemporary Study, CRC Press, Boca Raton, 2017. DOI: https://doi.org/10.1201/9781315153469
I.K. Argyros, S. Hilout, On an improved convergence analysis of Newton’s method, Appl. Math. Comput., 225 (2013), pp. 372-386. https://doi.org/10.1016/j.amc.2013.09.049 DOI: https://doi.org/10.1016/j.amc.2013.09.049
I.K. Argyros, R. Behl, S.S. Motsa, Unifying semilocal and local convergence of newton’s method on banach space with a convergence structure, Appl. Numer. Math., 115 (2017), pp. 225-234. https://doi.org/10.1016/j.apnum.2017.01.008 DOI: https://doi.org/10.1016/j.apnum.2017.01.008
I.K. Argyros, Y.J. Cho, S. Hilout, On the midpoint method for solving equations, Appl. Math. Comput., 216 (2010) no. 8, pp. 2321-2332. https://doi.org/10.1016/j.amc.2010.03.076 DOI: https://doi.org/10.1016/j.amc.2010.03.076
R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, Stable high-order iterative methods for solving nonlinear models, Appl. Math. Comput., 303 (2017), pp. 70-88. https://doi.org/10.1016/j.amc.2017.01.029 DOI: https://doi.org/10.1016/j.amc.2017.01.029
E. Catinas, A survey on the high convergence orders and computational convergence orders of sequences, Appl. Math. Comput., 343 (2019), pp. 1-20. https://doi.org/10.1016/j.amc.2018.08.006 DOI: https://doi.org/10.1016/j.amc.2018.08.006
J. Chen, I.K. Argyros, R.P. Agarwal, Majorizing functions and two-point newton-type methods, J. Comput. Appl. Math., 234 (2010) no. 5, pp. 1473-1484. https://doi.org/10.1016/j.cam.2010.02.024 DOI: https://doi.org/10.1016/j.cam.2010.02.024
J.A. Ezquerro, M.A. Hernandez, How to improve the domain of parameters for Newton’s method, Appl. Math. Lett., 48 (2015), pp. 91-101. https://doi.org/10.1016/j.aml.2015.03.018 DOI: https://doi.org/10.1016/j.aml.2015.03.018
L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
A.A. Magrenan, I.K. Argyros, Two-step newton methods, J. Complexity, 30 (2014) no. 4, pp. 533–553. DOI: https://doi.org/10.1016/j.jco.2013.10.002
W.C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ., 3 (1978) no. 1, pp. 129-142. DOI: https://doi.org/10.4064/-3-1-129-142
J.F. Traub, Iterative methods for the solution of equations, 312, Amer. Math. Soc., 1982.
Published
Issue
Section
License
Copyright (c) 2024 Santhosh George, Ioannis K Argyros
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.