Comparative numerical study between line search methods and majorant functions in barrier logarithmic methods for linear programming
DOI:
https://doi.org/10.33993/jnaat491-1199Keywords:
linear programming, interior point methods, line search, majorant functionAbstract
This paper presents a comparative numerical study between line search methods and majorant functions to compute the displacement step in barrier logarithmic method for linear programming. This study favorate majorant function on line search which is promoted by numerical experiments.
Downloads
References
D. Benterki, J.P. Crouzeix and B. Merikhi, A numerical feasible interior point method for linear semidefinite programs, RAIRO-Operation research,41, (2007), pp. 49–59, https://doi.org/10.1051/ro:2007006 DOI: https://doi.org/10.1051/ro:2007006
M. Bouafia D. Benterki and A. Yassine, A new efficient short-step projective interior point method for linear programming, Operations Research Letters 46, (2018), pp. 291–294, https://doi.org/10.1016/j.orl.2018.02.004 DOI: https://doi.org/10.1016/j.orl.2018.02.004
M. Bouafia D. Benterki and A. Yassine, An efficient parameterized logarithmic kernel function for linear optimization, Optim Lett, 12, (2018), pp. 1079–1097, https://doi.org/10.1007/s11590-017-1170-5 DOI: https://doi.org/10.1007/s11590-017-1170-5
M. Bouafia and A. Yassine, An efficient twice parameterized trigonometric kernel function for linear optimization, Optimization and Engineering, (2019), https://doi.org/10.1007/s11081-019-09467-w DOI: https://doi.org/10.1007/s11081-019-09467-w
L.B. Cherif and B. Meikhi, A penalty method for nonlinear programming, RAIRO - Oper. Res. 53, (2019) pp. 29–38, https://doi.org/10.1051/ro/2018061 DOI: https://doi.org/10.1051/ro/2018061
J.P. Crouzeix and B. Merikhi, Algorithm barrier method for semidefinite programming, RAIRO - Operations Research, 42, (2008) pp. 123–139, https://doi.org/10.1051/ro:2008005 DOI: https://doi.org/10.1051/ro:2008005
I.I. Dikin, Iterative solution of problems of linear and quadratic programming, Doklady Akademiia Nauk SSSR, 174, (1967) pp. 747–748.
N.K. Karmarkar, A new polynomial-time algorithm for linear programming, Proceedings of the 16th Annual ACM Symposium on Theory of Computing, 4, (1984), pp. 373–395, https://doi.org/10.1145/800057.808695 DOI: https://doi.org/10.1145/800057.808695
A. Leulmi,B. Meikhi and D. Benterki, Study of a logarithmic barrier approach for linear semidefinite programming, Journal of Siberian Federal University. Mathematics and Physics, 11, (2018), pp. 300–312, https://doi.10.17516/1997-1397-2018-11-3-300-312 DOI: https://doi.org/10.17516/1997-1397-2018-11-3-300-312
L. Menniche and D. Benterki, A logarithmic barrier approach for linear programming, Journal of Computational and Applied Mathematics, 312, (2017), pp. 267–275, https://doi.org/10.1016/j.cam.2016.05.025 DOI: https://doi.org/10.1016/j.cam.2016.05.025
Published
Issue
Section
License
Copyright (c) 2020 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.