Iterates of a modified Bernstein type operator
DOI:
https://doi.org/10.33993/jnaat482-1205Keywords:
Bernstein type operators, contraction principle, weakly Picard operatorsAbstract
Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of some modified Bernstein type operators.
Downloads
References
O. Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Carolinae, 44 (2003), 555–563.
O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Analysis Forum, 8 (2003)(2), 159–168.
M.M. Derriennic, Sur l’approximation de fonctions integrables sur [0,1] par des polynomes de Bernstein modifies, J. Approx. Theory, 31 (1981) no. 4, 325–343. https://doi.org/10.1016/0021-9045(81)90101-5 DOI: https://doi.org/10.1016/0021-9045(81)90101-5
M.M. Derriennic, On multivariate approximation by Bernstein-type polynomials, J. Approx. Theory, 45 (1985), 155–166. https://doi.org/10.1016/0021-9045(85)90043-7 DOI: https://doi.org/10.1016/0021-9045(85)90043-7
J.L. Durmeyer, Une formule d’inversion de la transformee de Laplace: Applications a la theorie des moments, These de 3e cycle, Faculte des Sciences de l’Universite de Paris, 1967.
T. Catinas, D. Otrocol, Iterates of Bernstein type operators on a square with one curved side via contraction principle, Fixed Point Theory, 14 (2013) no. 1, 97–106.
T. Catinas, D. Otrocol, Iterates of multivariate Cheney-Sharma operators, J. Comput. Anal. Appl., 15 (2013) no. 7, 1240–1246.
T. Catinas, D. Otrocol, Iterates of Cheney-Sharma type operators on a triangle with curved side, J. Comput. Anal. Appl., 28 (2020) no. 4, 737–744.
T. Catinas, D. Otrocol, I.A. Rus, The iterates of positive linear operators with the set of constant functions as the fixed point set, Carpathian J. Math., 32 (2016) no. 2, pp. 165–172. DOI: https://doi.org/10.37193/CJM.2016.02.04
I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the affine functions, J. Math. Anal. Appl., 372 (2010), 366–368. https://doi.org/10.1016/j.jmaa.2010.07.026 DOI: https://doi.org/10.1016/j.jmaa.2010.07.026
I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the constants, Appl. Math. Lett., 24 (2011) no. 12, 2068–2071. https://doi.org/10.1016/j.aml.2011.05.044 DOI: https://doi.org/10.1016/j.aml.2011.05.044
I. Gavrea, M. Ivan, On the iterates of positive linear operators, J. Approx. Theory, 163 (2011) no. 9, 1076–1079. https://doi.org/10.1016/j.jat.2011.02.012 DOI: https://doi.org/10.1016/j.jat.2011.02.012
H. Gonska, D. Kacso, P. Pitul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal., 1 (2006), 403–423.
H. Gonska, P. Pitul, I. Rasa, Over-iterates of Bernstein-Stancu operators, Calcolo, 44 (2007), 117–125. https://doi.org/10.1007/s10092-007-0131-2 DOI: https://doi.org/10.1007/s10092-007-0131-2
H. Gonska, I. Rasa, The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar., 111 (2006) nos. 1–2, 119–130. https://doi.org/10.1007/s10474-006-0038-4 DOI: https://doi.org/10.1007/s10474-006-0038-4
H. Gonska, I. Rasa, On infinite products of positive linear operators reproducing linear functions, Positivity, 17 (2013) no. 1, 67–79. https://doi.org/10.1007/s11117-011-0149-1 DOI: https://doi.org/10.1007/s11117-011-0149-1
G. Gwozdz-Lukawska, J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, J. Math. Anal. Appl., 356 (2009)(2), 453–463. https://doi.org/10.1016/j.jmaa.2009.03.023 DOI: https://doi.org/10.1016/j.jmaa.2009.03.023
S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approx. Theory, 3 (1970), 310–339. https://doi.org/10.1016/0021-9045(70)90055-9 DOI: https://doi.org/10.1016/0021-9045(70)90055-9
R.P. Kelisky, T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math., 21 (1967), 511–520. https://doi.org/10.2140/pjm.1967.21.511 DOI: https://doi.org/10.2140/pjm.1967.21.511
I. Rasa, C0-Semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. Palermo, Ser. II, Suppl., 82 (2010), 123–142.
I.A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001.
I.A. Rus, Fixed points and interpolation point set of a positive linear operator on C(D), Studia Univ. Babes-Bolyai Math., 55 (2010) no. 4, 243–248.
I.A. Rus, Iterates of Stancu operators, via contraction principle, Studia Univ. Babes–Bolyai Math., 47 (2002) no. 4, 101–104.
I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292 (2004), 259–261. https://doi.org/10.1016/j.jmaa.2003.11.056 DOI: https://doi.org/10.1016/j.jmaa.2003.11.056
I.A. Rus, Fixed point and interpolation point set of a positive linear operator on C(D), Studia Univ. Babes–Bolyai Math., 55 (2010) no. 4, 243–248.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.