Pointwise best coapproximation in the space of Bochner integrable functions
DOI:
https://doi.org/10.33993/jnaat492-1206Keywords:
best coapproximation , Coproximinal, Banach space.Abstract
Let \(X\) be a Banach space, \(G$\) be a closed subset of \(X\), and \((\Omega,\Sigma,\mu )\) be a \(\sigma\)-finite measure space. In this paper we present some results on coproximinality (pointwise coproximinality) of \(L^{p}(\mu,G)\), \(1\leq p\leq \infty\), in \(L^{p}(\mu,X\).
Downloads
References
C. Franchetti, M. Furi, Some characteristic properties of real Hilbert spaces, Rev. Romaine Math. Pures Appl.,17(1972), 1045–1048.
E. Abu-Sirhan,A Remark on Best Coapproximation in L∞(μ,X), International Journal of Mathematical Analysis,13(2019) no. 9, 449–458. https://doi.org/10.12988/ijma.2019.9847 DOI: https://doi.org/10.12988/ijma.2019.9847
H. Mazaheri, Jesmani, Some results on best coapproximation in L1(μ,X), Mediterr. J. Math., 4 (2007) no. 4, pp. 497–503. https://doi.org/10.1007/s00009-007-0131-0 DOI: https://doi.org/10.1007/s00009-007-0131-0
J. Jawdat, Best coapproximation in L∞(μ,X), TWMS J. App. Eng. Math., 8 (2018) no. 2, pp. 448–453
J. Mendoza, Proximinality in Lp(μ,X), J. Approx. Theory, 93 (1998), 331–343. https://doi.org/10.1006/jath.1997.3163 DOI: https://doi.org/10.1006/jath.1997.3163
K. Kuratowiski, C. Ryll-Nardzewski, A general theorem on selector, Bull. Acad. Polonaise Science, Series Math. Astr. Phys., 13 (1965), 379-403.
M. R. Haddadi, N. Hejazjpoor, H. Mazaheri,Some result about best coapproximation in Lp(S,X), Anal. Theory Appl., 26 (2010) no. 1, 69–75. https://doi.org/10.1007/s10496-010-0069-0 DOI: https://doi.org/10.1007/s10496-010-0069-0
P.L. Papini, I. Singer, Best coapproximation in normed linear spaces, Mh. Math., 88 (1979), 27–44. https://doi.org/10.1007/bf01305855 DOI: https://doi.org/10.1007/BF01305855
R. Khalil, Best approximation inLp(μ,X), Math. Proc. Cambridge Philos. Soc., 94 (1983), 277–279. https://doi.org/10.1017/s0305004100061120 DOI: https://doi.org/10.1017/S0305004100061120
R. Khalil, W. Deeb, Best approximation in Lp(μ,X), II, J. Approx. Theory, 59 (1989), 296–299. https://doi.org/10.1016/0021-9045(89)90094-4 DOI: https://doi.org/10.1016/0021-9045(89)90094-4
W.A. Light, Proximinality in Lp(μ,X), Rocky Mountain J. Math., 19 (1989), 251–259, https://doi.org/10.1216/rmj-1989-19-1-251 DOI: https://doi.org/10.1216/RMJ-1989-19-1-251
Y. Zhao-Yong, G. Tie-Xin, Pointwise best approximation in the space of strongly measurable functions with applications to best approximation in Lp(μ,X), J. Approx. Theory, 78 (1994), 314–320, https://doi.org/10.1006/jath.1994.1081 DOI: https://doi.org/10.1006/jath.1994.1081
Published
Issue
Section
License
Copyright (c) 2021 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.