On the convergence rates of pairs of adjacent sequences
DOI:
https://doi.org/10.33993/jnaat491-1221Keywords:
real sequence, limit, order of convergence, asymptotic scale, iterated limits, convergence rate, big OhAbstract
In this paper we give a suitable definition for the pairs of adjacent (convergent) sequences of real numbers, we present some two-sided estimations which caracterize the order of convergence to its limits of some of these sequences and we give certain general explanations for its similar orders of convergence.
Downloads
References
D. Andrica, V. Berinde, L. T oth, A. Vernescu, The order of convergence of certain sequences, Gaz. Mat., 103 (1998) no. 7-8, 282-286 (romanian)
E. T. Copson, Asymptotic Expansions, Cambridge University Press, Cambridge, London, New York, Melbourne, 2004.
N. G. De Bruijn, Asymptotic Methods in Analysis, Dover Publications, Inc. New York,1981.
D. W. De Temple, A quicker convergence to Euler’s constant, Amer. Math. Monthly, 100 (1993), 468-470, https://doi.org/10.1080/00029890.1993.11990433 DOI: https://doi.org/10.1080/00029890.1993.11990433
A. Erdely, Asymptotic Expansions, Dover Publications, Inc. New York, 1956.
L. Euler, De progressionibus harmonicis observationes, Commentarii academiae scientiarum imperialis Petropolitanae (1734), 150-161.
L. Euler, Opera Omnia, series 1, Lausanne, 1748 (translated into French 1786, German1788, Russian 1936, English 1988).
G. M. Fihtenholt, A course of differential and integral calculus, Technical Edition, Bucharest, 1963-1965 (in Romanian).
H. G. Garnir, Fonctions de variables reelles, Tome I, Librairie Universitaire Louvain & Gauthier Villars, Paris, 1956.
J. Havil, Gamma; exploring Euler’s constant, Princeton University Press, Princeton and Oxford, 2003.
D. S. Mitrinovic, P. M. Vasic:, Analytic Inequalities, Springer-Verlag, Berlin - Heidelberg - New York, 1970.
L. Moisotte,1850 exercices de mathematiques, Dunod Universite, Ed. Bordas, Paris, 1978.
T. Negoi, A faster convergence to Euler’s constant, Gaz. Mat. 15 (1997), 111-113 (Engl. transl. in Math Gazette 83 (1999), 487-489) (in Romanian), https://doi.org/10.2307/3620963 DOI: https://doi.org/10.2307/3620963
C. P. Niculescu, A. Vernescu, A Two-sided Estimate of ex−(1 +xn)n, JIPAM vol.5(2004) no. 3, article no. 55.
C. P. Niculescu, A. Vernescu, On the order of convergence of the sequence (1−1n)n, Gaz. Mat. 109 (2004) no. 4, 145-148 (in Romanian).
G. Polya, G. Szego, Problems and Theorems in Analysis, Springer-Verlag, Berlin – Heidelberg - New York, 1978.
I. Rizzoli, A theorem Stolz-Cesaro, Gaz. Mat. 95 (1990) nos. 10-11-12, 281-284 (in Romanian).
J. G. Van der Corput, Asymptotic expansions, I, II, Nat. Bureau of Standards, 1951.
J. G. Van der Corput, Asymptotic expansions, III, Nat. Bureau of Standards, 1952.
J. G. Van der Corput, Asymptotic, I, II, III, IV, Proc. of. Nederl. Akad. Wetensch. Amsterdam 57 (1954), 206–217, https://doi.org/10.1016/s1385-7258(54)50031-4 DOI: https://doi.org/10.1016/S1385-7258(54)50031-4
J. G. Van der Corput, Asymptotic expansions, I ,Fundamental theorems of asymptotics, Dept. of Math. Univ. of California, Berkeley, 1954.
J. G. Van der Corput, Asymptotic developments, I, Fundamental theorems of asymptotics, J. Anal. Math., 4 (1956), 341–418, https://doi.org/10.1007/bf02787727 DOI: https://doi.org/10.1007/BF02787727
J. G. Van der Corput, Asymptotic Expansions, Lecture Note, Stanford Univ., 1962.
A. Vernescu, An inequality concerning the number ,,e“, Gaz. Mat., 87 (1982) nos. 2–3, pp. 61–62 (in Romanian).
A. Vernescu, The order of convergence of the sequence which defines Euler’s constant, Gaz. Mat. 88 (1983) nos. 10–11, pp. 380–381 (in Romanian).
A. Vernescu, A simple proof of an inequality concerning the number”e“, Gaz. Mat., 93 (1988) nos. 5–6, pp. 206–207 (in Romanian).
A. Vernescu, Problem 22402, Gaz. Mat., 96 (1991) no. 3, p. 233 (in Romanian).
A. Vernescu, On the generalized harmonic series, Gaz. Mat. (Series A), 15 (104) (1997) no. 3, pp. 186–190 (in Romanian).
A. Vernescu, A new speeded convergence to Euler’s constant, Gaz. Mat. (Series A), 17 (96) (1999) no. 3, pp. 273–278 (in Romanian).
A. Vernescu, On the convergence of a sequence with the limit ln 2, Gaz. Mat., 102 (1997) nos. 10–11, pp. 370–374 (in Romanian)
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.