Basin attractors for derivative-free methods to find simple roots of nonlinear equations

Authors

DOI:

https://doi.org/10.33993/jnaat492-1232

Keywords:

Basin of attraction, derivative-free methods, simple roots, nonlinear equations
Abstract views: 234

Abstract

 Many methods exist for solving nonlinear equations. Several of these methods are derivative-free. One of the oldest is the secant method where the derivative is replaced by a divided difference. Clearly such method will need an additional starting value. Here we consider several derivative-free methods and compare them using the idea of basin of attraction.

Downloads

Download data is not yet available.

References

F. I. Chicharro, A. Cordero, J. R. Torregrosa, and M. P. Vassileva, King-Type Derivative-Free Iterative Families: Real and Memory Dynamics, Complexity, 2017, Article ID 2713145, 15 pages. DOI: https://doi.org/10.1155/2017/2713145

C. Chun, B. Neta, Comparative study of methods of various orders for finding simple roots of nonlinear equations, Journal of Applied Analysis and Computation, 9, (2019), 400–427, https://doi.org/10.11948/2156-907x.20160229 DOI: https://doi.org/10.11948/2156-907X.20160229

C. Chun, B. Neta, Comparative study of methods of various orders for finding repeated roots of nonlinear equations, J. Computational and Applied Mathematics, 340, (2018), 11-42, https://doi.org/10.1016/j.cam.2018.02.009 DOI: https://doi.org/10.1016/j.cam.2018.02.009

C. Chun, B. Neta, Comparative study of eighth-order methods for finding simple roots of nonlinear equations. Numer. Algor., 74, (2017), 1169-1201, https://doi.org/10.1007/s11075-016-0191-y DOI: https://doi.org/10.1007/s11075-016-0191-y

A. Cordero, J. L. Hueso, E. Martinez, J. R. Torregrosa, Generating optimal derivative free iteration methods for nonlinear equations by using polynomial interpolation, Math. Comput. Model., 57(7-8), (2013), 1950-1956, https://doi.org/10.1016/j.mcm.2012.01.012 DOI: https://doi.org/10.1016/j.mcm.2012.01.012

P. Jarratt, D. Nudds, The use of rational functions in the iterative solution of equations on a digital computer, Computer J., 8, (1965), 62-65, https://doi.org/10.1093/comjnl/8.1.62 DOI: https://doi.org/10.1093/comjnl/8.1.62

S. K. Khattri, T. Steihaug, Algorithm for forming derivative-free optimal methods, Numer. Algor., 65, (2014), 809-824, https://doi.org/10.1007/s11075-013-9715-x DOI: https://doi.org/10.1007/s11075-013-9715-x

H. T. Kung, J. F. Traub, Optimal orderof one-point and multipoint iteration, J. Assoc. Comput. Math., 21, (1974), 634-651, https://doi.org/10.1145/321850.321860 DOI: https://doi.org/10.1145/321850.321860

Y. Peng, H. Feng, Q. Li, X. Zhang, A fourth-order derivative-free algorithm for nonlinear equations, J. Comput. Appl. Math., 235, (2011), 2551-2559, https://doi.org/10.1016/j.cam.2010.11.007 DOI: https://doi.org/10.1016/j.cam.2010.11.007

I. Petkovic’ and D. Herceg, Comparison in mathematical research: the study of threepoint root-finding methods, Numer. Algor., 84, (2020), 1179–1198, https://doi.org/10.1007/s11075-019-00796-6 DOI: https://doi.org/10.1007/s11075-019-00796-6

Petkovic’ M. S., Illic, S., Dzunic’, J., Derivative-free two-point methods with and without memory for solving nonlinear equations, Appl. Math. Comput., 217, (2010), 1887-1895, https://doi.org/10.1016/j.amc.2010.06.043 DOI: https://doi.org/10.1016/j.amc.2010.06.043

Petkovic’, M. S., Neta, B., Petkovic’, L. D., Dzunic’, J., Multipoint Methods for the Solution of Nonlinear Equations, Elsevier, 2012.

Popovski, D.B., Method of tangential hyperbolic approximation for solving equations, Proc. 3rd Int. Symp. Computers at the University, Cavtat May, 25-28 1981, 311.1–311.6.

J. R. Sharma, R. K. Goyal, Fourth-order derivative-free methods for solving nonlinear equations, Inter. J. Computer Math., 83, (2006), 101-106, https://doi.org/10.1080/00207160500113306 DOI: https://doi.org/10.1080/00207160500113306

Soleymani, F. And S. Shateyi, Two optimal eighth-order derivative-free classes of iterative methods, Abstract. Applied. Anal. 2012, ID 318165, pp. 1–14, https://doi.org/10.1155/2012/318165 DOI: https://doi.org/10.1155/2012/318165

F. Soleymani, S. K. Vanani, Optimal Steffensen-type methods with eighth order of convergence, Compute. Math. Apple. 62, (2011), 4619-4626, https://doi.org/10.1016/j.camwa.2011.10.047 DOI: https://doi.org/10.1016/j.camwa.2011.10.047

J. F. Steffensen, Remarks on iteration, Scand. Actuar. J., 1, (1933), 64-72, https://doi.org/10.1080/03461238.1933.10419209 DOI: https://doi.org/10.1080/03461238.1933.10419209

B. D. Stewart, Attractor Basins of Various Root-Finding Methods, M.S. thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA, June 2001.

R. Thukral, Eighth-order iterative methods without derivatives for solving nonlinear equations, ISRN Appl. Math. 2011, ID 693787, pp. 1–12, https://doi.org/10.5402/2011/693787 DOI: https://doi.org/10.5402/2011/693787

J. F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, New York, 1964.

H. Veiseh, T. Lotfi, T. Allahviranloo, A study on the local convergence and dynamics of the two-step and derivative-free Kung-Traub’s method, Comp. Applied. Math., 37, (2018),2428-2444, https://doi.org/10.1007/s40314-017-0458-5 DOI: https://doi.org/10.1007/s40314-017-0458-5

T. Zhanlav, K. Otgondorj, Comparison of some optimal-free three-point iterations, J. Numer. Anal. Approx. Theory, 49, (2020), 76–90, https://ictp.acad.ro/jnaat/journal/article/view/1179

Q. Zheng, J. Li, F. Huang, An optimal Steffensen type family for solving nonlinear equations, Appl. Math. Comput., 217 (2011), 9592–9597, https://doi.org/10.1016/j.amc.2011.04.035 DOI: https://doi.org/10.1016/j.amc.2011.04.035

Downloads

Published

2020-12-31

How to Cite

Neta, B. (2020). Basin attractors for derivative-free methods to find simple roots of nonlinear equations. J. Numer. Anal. Approx. Theory, 49(2), 177–189. https://doi.org/10.33993/jnaat492-1232

Issue

Section

Articles