Approximation by matrix transform in generalized grand Lebesgue spaces with variable exponent

Authors

DOI:

https://doi.org/10.33993/jnaat501-1234

Keywords:

trigonometric approximation, matrix transforms, grand variable exponent, Lebesgue spaces, Lipschitz classes, rate of approximation, Fourier series
Abstract views: 246

Abstract

In this work the Lipschitz subclass of the generalized grand Lebesgue space with variable exponent is defined and the error of approximation by matrix transforms in this subclass is estimated.

Downloads

Download data is not yet available.

References

N.K. Bary, A Treatise on Trigonometric Series, A Pergamon Press Book, New York,1964.

P. Chandra, A note on degree of approximation by Norlund and Riesz operators, Mat. Vestnik, 42 (1990), pp. 9–10.

P. Chandra, Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl., 275 (2002), pp. 13–26, https://doi.org/10.1016/S0022-247X(02)00211-1.

D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces Foundation and Harmonic Analysis, Birkhasuser, Basel, 2013.

N. Danelia, V.M. Kokilashvili, Approximation by trigonometric polynomials in subspace of weighted grand Lebesgue space, Bull. Georg. Nation. Acad. Sci., 7 (2013) no. 1, pp. 11–15.

N. Danelia, V.M. Kokilashvili, Approximation by trigonometric polynomials in the framework of grand variable exponent Lebesgue space, Georgian Math. J., 23 (2016) no.1, pp. 43–53, https://doi.org/10.1515/gmj-2015-0059.

U. Deger, On approximation by Norlund and Riesz submethods in variable exponent Lebesgue spaces, Commun. Fac. Sci. Univ. Ank. Series A1,67(2018) no. 1, pp. 46–59, https://doi.org/10.1501/Commua10000000829.

L. Diening, P. Harjulehto, P. Hasto, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, New York, 2011, https://doi.org/10.1007/978-3-642-18363-8.

L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math., 92 (1997), pp. 249–258, https://doi.org/10.1007/BF02678192.

A. Guven, Trigonometric approximation of functions in weighted Lp spaces, Sarajevo J. Math., 5 (2009) no. 17, pp. 99–108.

A. Guven, Approximation in weighted Lp spaces, Revista De La Union Matematica Argentina, 53 (2012) no. 1, pp. 11-23,

A. Guven, D.M. Israfilov, Trigonometric approximation in generalized Lebesgue spaces Lp(x), J. Math. Ineq., 4 (2010) no. 2, pp. 285–299, http://doi.org/10.7153/jmi-04-25

A. Guven, Trigonometric approximation by matrix transforms in Lp(x) space, Analysis and Applications, 10 (2012) no. 1, pp. 47–65, https://doi.org/10.1142/S0219530512500030.

D.M. Israfilov, V. Kokilashvili, S. Samko, Approximation in weighted Lebesgue and Smirnov spaces with variable exponents, Proceed. of A. Razmadze Math. Institute, 143 (2007), pp. 25–35.

D.M. Israfilov, A. Testici, Approximation problems in the Lebesgue spaces with variable exponent, J. Math. Anal. Appl., 459 (2018), pp. 112–123, https://doi.org/10.1016/j.jmaa.2017.10.067.

D.M. Israfilov, A. Testici, Approximation in weighted generalized grand Lebesgue spaces, Colloquium Mathematicum, 143 (2016) no. 1, pp. 113–126.

D.M. Israfilov, A. Testici, Approximation in weighted generalized grand Smirnov classes, Studia. Sci. Math. Hungar., 54 (2017) no. 4, pp. 471–488, https://doi.org/10.1556/012.2017.54.4.1378.

D.M. Israfilov, A. Testici, Approximation by matrix transforms in weighted Lebesgue spaces with variable exponent, Results Math., 73 (2018), art. no. 8, https://doi.org/10.1007/s00025-018-0762-4.

T. Iwaniec, C. Sbordone, On integrability of the Jacobian under minimal hypotheses, Arch. Rational Mechanics Anal., 119 (1992), pp. 129–143, https://doi.org/10.1007/BF00375119.

T. Iwaniec, C. Sbordone, Riesz transform and elliptic pde’s with VMO coefficients, J. Analyse Math., 74 (1998), pp. 183–212, https://doi.org/10.1007/BF02819450.

S.Z. Jafarov, Approximation by Fejer sums of Fourier trigonometric series in weighted Orlicz spaces, Hacettepe Journal of Mathematics and Statistics, 42 (2013) no. 3, pp.259–268.

S.Z. Jafarov, Approximation by trigonometric polynomials in subspace of variable exponent grand Lebesgue spaces, Global J. Math., 8 (2016) no. 2, pp. 836–843.

S.Z. Jafarov, Approximation of the functions in weighted Lebesgue spaces with variable exponent, Complex Var. Elliptic Equ., 63 (2018) no. 10, pp. 1444–1458, https://doi.org/10.1080/17476933.2017.1379999.

S.Z. Jafarov, Linear methods of summing Fourier series and approximation in weighted Orlicz spaces, Turkish J. Math., 42 (2018), pp. 2916–2925 https://doi.org/10.3906/mat-1804-31

S.Z. Jafarov, Approximation by matrix transforms in weighted Orlicz spaces, Turkish J. Math., 44(2020), pp. 179–193, https://doi.org/10.3906/mat-1909-44

V.M. Kokilashvili, A. Meskhi, H. Rafeiro, et al., Integral Operators in Non-standard Function Spaces, volumes I and II, Birkhauser, Basel, 2016. https://doi.org/10.1007/978-3-319-21018-6.

V.M. Kokilashvili, A. Meskhi, Maximal and Calderon–Zygmund operators in grand variable exponent Lebesgue spaces, Georgian Math. J., 21 (2014) no. 4, pp. 447–461, https://doi.org/10.1515/gmj-2014-0047.

L. Leindler, Trigonometric approximation in Lp-norm, J. Math. Anal. Appl., 302 (2005) no. 1, pp. 129–136, https://doi.org/10.1016/j.jmaa.2004.07.049.

R.N. Mohapatra, D.C. Russell, Some direct and inverse theorems in approximation of functions, J. Austral. Math. Soc. (Ser. A), 34 (1983), pp. 143–154, https://doi.org/10.1017/S144678870002317X.

M. L. Mittal, B. E. Rhoades, V.N. Mishra, U. Singh, Using infinite matrices to approximate functions of class image using trigonometric polynomials, J. Math. Anal. Appl., 326 (2007) no. 1, pp. 667–676, https://doi.org/10.1016/j.jmaa.2006.03.053.

E.S. Quade, Trigonometric approximation in the mean, Duke Math. J., 3 (1937), pp. 529–543, http://doi.org/10.1215/S0012-7094-37-00342-9.

C. Sbordone, Grand Sobolev spaces and their applications to variational problems, Le Mathematiche, LI(2) (1996), pp. 335–347.

C. Sbordone, Nonlinear elliptic equations with right hand side in nonstandard spaces, Rend. Sem. Math. Fis. Modena, Supplemento al XLVI (1998), pp. 361–368.

I.I. Sharapudinov, Approximation of functions in Lp(x)2π by trigonometric polynomials, Izvestiya RAN: Ser. Math., 77(2), (2013), 197–224; English transl., Izvestiya: Mathematics, 77 (2013) no. 2, pp. 407–434, https://doi.org/10.1070/IM2013v077n02ABEH002641

I.I. Sharapudinov, Approximation of functions by De Vallee Poussin means in the Lebesgue and Sobolev spaces with variable exponent, Mat. Sb. 207 (2016), no. 7, 131–158; translation in Sb. Math. 207 (2016), no. 7-8, 1010–1036, https://doi.org/10.4213/sm8509

B. Szal, Trigonometric approximation by Norlund type means in Lp-norm, Comment. Math. Univ. Carolin., 50 (2009) no. 4, pp. 575–589.

A. Testici, D.M. Israfilov, Approximation by matrix transform in generalized grand Lebesgue spaces with variable exponent, Applicable Analysis, 100 (2019) no. 4, pp. 819–834, https://doi.org/10.1080/00036811.2019.1622680.

A. Testici, Approximation by Norlund and Riesz means in weighted Lebesgue space with variable exponent, Commun. Fac. Sci. Univ. Ank. Series A1, 68 (2019), pp. 2014–2025, https://doi.org/10.31801/cfsuasmas.460449.

A. Zygmund, Trigonometric Series, vol. I and II, Cambridge University Press, 1959.

Downloads

Published

2021-11-19

Issue

Section

Articles

How to Cite

Testici, A., & Israfilov, D. (2021). Approximation by matrix transform in generalized grand Lebesgue spaces with variable exponent. J. Numer. Anal. Approx. Theory, 50(1), 60-72. https://doi.org/10.33993/jnaat501-1234