Approximation by matrix transform in generalized grand Lebesgue spaces with variable exponent

Authors

Keywords:

trigonometric approximation, matrix transforms, grand variable exponent, Lebesgue spaces, Lipschitz classes, rate of approximation, Fourier series

Abstract

In this work the Lipschitz subclass of the generalized grand Lebesgue space with variable exponent is defined and the error of approximation by matrix transforms in this subclass is estimated.

Downloads

Download data is not yet available.

References

N.K. Bary, A Treatise on Trigonometric Series, A Pergamon Press Book, New York,1964.

P. Chandra, A note on degree of approximation by Norlund and Riesz operators, Mat.Vestnik, 42(1990), pp. 9–10.

P. Chandra, Trigonometric approximation of functions in Lp-norm, J. Math. Anal.Appl.,275(2002), pp. 13–26,

https://doi.org/10.1016/S0022-247X(02)00211-1.

D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces Foundation and Harmonic Analysis, Birkhasuser, Basel, 2013.

N. Danelia, V.M. Kokilashvili, Approximation by trigonometric polynomials in subspace of weighted grand Lebesgue space, Bull. Georg. Nation. Acad. Sci.,7(2013) no. 1,pp. 11–15. http://science.org.ge/old/moambe/7-1/Danelia%2011-15.pdf

N. Danelia, V.M. Kokilashvili, Approximation by trigonometric polynomials in theframework of grand variable exponent Lebesgue space, Georgian Math. J., 23(2016) no.1, pp. 43–53, https://doi.org/10.1515/gmj-2015-0059.

U. Deger, On approximation by Norlund and Riesz submethods in variable exponent Lebesgue spaces, Commun. Fac. Sci. Univ. Ank. Series A1,67(2018) no. 1, pp. 46–59, https://doi.org/10.1501/Commua10000000829.

L. Diening, P. Harjulehto, P. Hasto, Lebesgue and Sobolev Spaces with VariableExponents, Springer, New York, 2011,

https://doi.org/10.1007/978-3-642-18363-8.

L. Greco, T. Iwaniec, C. Sbordone, Inverting the p-harmonic operator, ManuscriptaMath., 92(1997), pp. 249–258,

https://doi.org/10.1007/BF02678192.

A. Guven, Trigonometric approximation of functions in weighted Lpspaces, SarajevoJ. Math., 5(2009) no. 17, pp. 99–108. https://www.anubih.ba/Journals/vol.5,no-1,y09/11revGuven.pdf.

A. Guven, Approximation in weighted Lpspaces, Revista De La Union Matematica Argentina, 53(2012) no. 1, pp. 11-23, https://inmabb.criba.edu.ar/revuma/pdf/v53n1/v53n1a02.pdf.

A. Guven, D.M. Israfilov, Trigonometric approximation in generalized LebesguespacesLp(x), J. Math. Ineq., 4(2010) no. 2, pp. 285–299, http://jmi.ele-math.com/04-25/Trigonometric-approximation-in-generalized-Lebesgue-spaces-L-p(x).

A. Guven, Trigonometric approximation by matrix transforms inLp(x)space, Analysisand Applications,10(2012) no. 1, pp. 47–65, https://doi.org/10.1142/S0219530512500030.

D.M. Israfilov, V. Kokilashvili, S. Samko, Approximation in weighted Lebesgueand Smirnov spaces with variable exponents, Proceed. of A. Razmadze Math. Institute, 143(2007), pp. 25–35, http://www.rmi.ge/proceedings/volumes/pdf/v143-3.pdf.

D.M. Israfilov, A. Testici, Approximation problems in the Lebesgue spaces withvariable exponent, J. Math. Anal. Appl.,459(2018), pp. 112–123, https://doi.org/10.1016/j.jmaa.2017.10.067.

D.M. Israfilov, A. Testici, Approximation in weighted generalized grand Lebesguespaces, Colloquium Mathematicum,143(2016) no. 1, pp. 113–126, https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/colloquium-mathematicum/all/143/1/91291/approximation-in-weighted-generalized-grand-lebesgue-spaces.

D.M. Israfilov, A. Testici, Approximation in weighted generalized grand Smirnov classes, Studia. Sci. Math. Hungar., 54(2017) no. 4, pp. 471–488, https://doi.org/10.1556/012.2017.54.4.1378.

D.M. Israfilov, A. Testici, Approximation by matrix transforms in weighted Lebesgue spaces with variable exponent, Results Math., 73(2018), art. no. 8, https://doi.org/10.1007/s00025-018-0762-4.

T. Iwaniec, C. Sbordone, On integrability of the Jacobian under minimal hypotheses, Arch. Rational Mechanics Anal., 119(1992), pp. 129–143, https://doi.org/10.1007/BF00375119.

T. Iwaniec, C. Sbordone, Riesz transform and el liptic pde’s with VMO coefficients, J. Analyse Math., 74(1998), pp. 183–212, https://doi.org/10.1007/BF02819450.

S.Z. Jafarov, Approximation by Fejer sums of Fourier trigonometric series in weighted Orlicz spaces, Hacettepe Journal of Mathematics and Statistics, 42(2013) no. 3, pp.259–268, http://www.hjms.hacettepe.edu.tr/uploads/7fb9ca70-022b-4bc7-817e-3e39804a0ea3.pdf.

S.Z. Jafarov, Approximation by trigonometric polynomials in subspace of variable ex-ponent grand Lebesgue spaces, Global J. Math.,8(2016) no. 2, pp. 836–843.

S.Z. Jafarov, Approximation of the functions in weighted Lebesgue spaces with variable exponent, Complex Var. Elliptic Equ.,63(2018) no. 10, pp. 1444–1458, https://doi.org/10.1080/17476933.2017.1379999.

S.Z. Jafarov, Linear methods of summing Fourier series and approximation inweighted Orlicz spaces, Turkish J. Math., 42(2018), pp. 2916–2925, https://dergipark.org.tr/tr/download/article-file/732343.

S.Z. Jafarov, Approximation by matrix transforms in weighted Orlicz spaces, TurkishJ. Math.,44(2020), pp. 179–193,

https://dergipark.org.tr/tr/download/article-file/948899

V.M. Kokilashvili, A. Meskhi, H. Rafeiro, et al., Integral Operators in Non-standard Function Spaces, volumes I and II, Birkhauser, Basel, 2016. https://doi.org/10.1007/978-3-319-21018-6.

V.M. Kokilashvili, A. Meskhi, Maximal and Calderon–Zygmund operators in grandvariable exponent Lebesgue spaces, Georgian Math. J., 21(2014) no. 4, pp. 447–461, https://doi.org/10.1515/gmj-2014-0047.

L. Leindler, Trigonometric approximation in Lp-norm,J. Math. Anal. Appl., 302(2005) no. 1, pp. 129–136,

https://doi.org/10.1016/j.jmaa.2004.07.049.

R.N. Mohapatra, D.C. Russell, Some direct and inverse theorems in approximationof functions,J. Austral. Math. Soc. (Ser. A), 34(1983), pp. 143–154, https://doi.org/10.1017/S144678870002317X.

M. L. Mittal, B. E. Rhoades, V.N. Mishra, U. Singh, Using infinite matrices toapproximate functions of class image using trigonometric polynomials, J. Math. Anal.Appl.,326(2007) no. 1, pp. 667–676, https://doi.org/10.1016/j.jmaa.2006.03.053.

E.S. Quade, Trigonometric approximation in the mean, Duke Math. J.,3(1937), pp.529–543, http://doi.org/10.1215/S0012-7094-37-00342-9.

C. Sbordone, Grand Sobolev spaces and their applications to variational problems,LeMathematiche, LI(2) (1996), pp. 335–347, https://lematematiche.dmi.unict.it/index.php/lematematiche.

C. Sbordone, Nonlinear el liptic equations with right hand side in nonstandard spaces,Rend. Sem. Math. Fis. Modena, Supplemento al XLVI (1998), pp. 361–368.

I.I. Sharapudinov, Approximation of functions inLp(x)2πby trigonometric polynomials,Izvestiya RAN: Ser. Math., 77(2), (2013), 197–224; English transl., Izvestiya: Mathematics,77(2013) no. 2, pp. 407–434, https://iopscience.iop.org/article/10.1070/IM2013v077n02ABEH002641.

I.I. Sharapudinov, Approximation of functions by De Vallee Poussin means in theLebesgue and Sobolev spaces with variable exponent, Sbornik Math.,207(2016) no. 7,pp. 1010–1036, https://iopscience.iop.org/article/10.1070/SM8509.

B. Szal, Trigonometric approximation by Norlund type means in Lp-norm, Comment.Math. Univ. Carolin.,50(2009) no. 4, pp. 575–589, https://cmuc.karlin.mff.cuni.cz/pdf/cmuc0904/szal.pdf.

A. Testici, D.M. Israfilov, Approximation by matrix transform in generalized grand Lebesgue spaces with variable exponent, Applicable Analysis,100(2019) no. 4, pp. 819–834, https://doi.org/10.1080/00036811.2019.1622680.

A. Testici, Approximation by Norlund and Riesz means in weighted Lebesgue space withvariable exponent, Commun. Fac. Sci. Univ. Ank. Series A1,68(2019), pp. 2014–2025, https://doi.org/10.31801/cfsuasmas.460449.

A. Zygmund, Trigonometric Series, vol. I and II, Cambridge University Press, 1959.

Downloads

Published

2021-11-19

How to Cite

Israfilov, D., & Testici, A. (2021). Approximation by matrix transform in generalized grand Lebesgue spaces with variable exponent. J. Numer. Anal. Approx. Theory, 50(1), 60–72. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1234

Issue

Section

Articles