Solution to unsteady fractional heat conduction in the quarter-plane via the joint Laplace-Fourier sine transforms

Authors

  • Arman Aghili University of Guilan, Islamic Republic of Iran

DOI:

https://doi.org/10.33993/jnaat501-1240

Keywords:

Laplace transform, Fourier transform, Hankel transform, Riemann-Liouville fractional derivative, Caputo fractional derivative, Modified Bessel functions, Stieltjes transform, Heat conduction, Fokker-Planck equation
Abstract views: 173

Abstract

In this article, the author implemented the joint transform method, for solving the boundary value problems of time fractional heat equation. The results reveal that the integral transform method is reliable and efficient. Illustrative examples are also provided.

Downloads

Download data is not yet available.

References

A. Aghili, Solution to time fractional non-homogeneous first order PDE with non-constant coefficients. Tbilisi Mathematical Journal 12 (2019) 4, pp. 149–155, https://doi.org/10.32513/tbilisi/1578020577

A. Aghili, Special functions, integral transforms with applications, Tbilisi Mathematical Journal 12 (2019) 1, pp. 33-44, http://doi.org/10.32513/tbilisi/1553565624

A. Aghili, Fractional Black-Scholes equation. International Journal of Financial Engineering, Vol. 4, No. 1 (2017) 1750004 (15 pages), https://doi.org/10.1142/S2424786317500049

A. Aghili, Complete Solution For The Time Fractional Diffusion Problem With Mixed Boundary Conditions by Operational Method, Applied Mathematics and Nonlinear Sciences, 2020 (AOP) pp. 9-20, https://doi.org/10.2478/amns.2020.2.00002

A. Apelblat, Laplace transforms and their applications, Nova science publishers, Inc, New York, 2012.

G. Dattoli, P.L. Ottaviani, A. Torr, I. Vazquez, Evolution operator equations: integration with algebraic and finite difference methods.Applications to physical problemsin classical and quantum mechanics and quantum field theory. Riv.Nuovo. Cimento Soc. Ital. Fis.(Ser. 4) 20 (1997) 2, pp. 1-133, https://doi.org/10.1007/bf02907529

G. Dattoli, H.M. Srivastava, K.V. Zhukovsky. Operational methods and differential equations to initial – value problems. Applied Mathematics and computations.184 (2007) pp. 979-1001, https://doi.org/10.1016/j.amc.2006.07.001

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North Holand Mathematics Studies, 204, Elsevier Science Publishers, Amesterdam, Heidelberg and New York, 2006.

F. Mainardi, G. Paganini, R.K. Saxena, Fox H functions in fractional diffusion. Journal of Computational and Applied Mathematics 178 (2005), pp. 321-331, https://doi.org/10.1016/j.cam.2004.08.006

I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA, 1999.

Y.Z. Povstenko, Fractional radial diffusion in a cylinder, Journal of Molecular Liquides 137 (2008), pp. 46-50, https://doi.org.doi.org/10.1016/j.molliq.2007.03.006

W. Schneider, W. Wyss, Fractional diffusion and wave equations, J. Math. Phys. 27 (1989), pp. 134-144, https://doi.org.https//doi.org/10.1063/1.528578

S.P. Zhou, G.KL. He, T.F. Xie,On a class of fractals: the constructive structure. Chaos, Solitons and Fractals 2004; (19) 1099-1104, https://doi.org/10.1016/s0960-0779(03)00282-0

Downloads

Published

2021-11-19

Issue

Section

Articles

How to Cite

Aghili, A. (2021). Solution to unsteady fractional heat conduction in the quarter-plane via the joint Laplace-Fourier sine transforms. J. Numer. Anal. Approx. Theory, 50(1), 12-26. https://doi.org/10.33993/jnaat501-1240