Nonuniform low-pass filters on non Archimedean local fields

Authors

  • Owais Ahmad National Institute of Technology Srinagar https://orcid.org/0000-0002-9903-2656
  • Abid H. Wani University of Kashmir
  • Dr. Abid Ayub Hazari University of Kashmir
  • Prof Neyaz Sheikh National Institute of Technology Srinagar

Keywords:

Low pass filter, nonuniform multiresolution analysis, Fourier transform, local field, wavelet analysis

Abstract

In real life application all signals are not obtained from uniform shifts; so there is a natural question regarding analysis and decompositions of this types of signals by a stable mathematical tool.

Gabardo and Nashed (J. Funct. Anal. 158:209-241, 1998) filled this gap by the concept of nonuniform multiresolution analysis. In this setting, the associated translation set \(\Lambda =\left\{ 0,r/N\right\}+2\,\mathbb Z\) is no longer a discrete subgroup of \(\mathbb R\) but a spectrum associated with a certain one-dimensional spectral pair and the associated dilation is an even positive integer related to the given spectral pair.

The main aim of this article is to provide the characterization of nonuniform low-pass filters on non-Archimedean local fields.

Downloads

Download data is not yet available.

References

O. Ahmad, M.Y. Bhat, N. A. Sheikh, Construction of Parseval Framelets Associatedwith GMRA on Local Fields of Positive Characteristic, Numerical Functional Analysisand optimization (2021), https://doi.org/10.1080/01630563.2021.1878370

O. Ahmad, N. Ahmad, Construction of Nonuniform Wavelet Frames on Non-Archimedean Fields, Math. Phy. Anal. and Geometry, 23(47) (2020).

O. Ahmad, N. A Sheikh, K. S Nisar, F. A. Shah, Biorthogonal Wavelets on Spec-trum, Math. Methods in Appl. Sci, (2021) pp. 1-12, https://doi.org/10.1002/mma.7046.

O. Ahmad, Nonuniform Periodic Wavelet Frames on Non-Archimedean Fields, AnnalesUniversitatis Mariae Curie-Sklodowska, sectio A - Mathematica, pp. 1-17, (2) (2020)

O. Ahmad, N. A Sheikh, Explicit Construction of Tight Nonuniform Framelet Packetson Local Fields, Operators and Matrices15(1) (2021), pp. 131-149, https://doi.org/10.7153/oam-2021-15-10

O. Ahmad, N.A. Sheikh, Mobin Ahmad, Frames Associated with Shift Invariant Spaces on Positive Half Line, Acta Math. Sapientia, 13, 1 (2021) pp. 27-48

O. Ahmad, A.A.H. Ahmadini, M. Ahmad, Nonuniform Super Wavelets inL2(K),Problemy Analiza – Issues of Analysis1129 (1) (2022).

O. Ahmad, N.A. Sheikh, F. A. Shah,Fractional Multiresolution Analysis and As-sociated Scaling functions inL2(R), Analyis and Mathematical Physics, (2021) 11:47, https://doi.org/10.1007/s13324-021-00481-9

O. Ahmad, N.A. Sheikh,Nonuniform Semiorthogonal wavelet Frames on Non-Archimedean Fields. Elec. Jour. Math. Anal. and Appl.9(2) (2021), pp. 288-300.

O. Ahmad, N.A. Sheikh, Inequalities for Wavelet Frames with Composite Dilations inL2(Rn), Rocky Mountain J. Math.51(1) (2021), pp. 31-41.

O. Ahmad, N.A. Sheikh, M. A. Ali, Nonuniform nonhomogeneous dual waveletframes in Sobolev spaces inL2(K), Afrika Math., (2020), https://doi.org.%282020%29%20doi.org/10.1007/s13370-020-00786-1.

O. Ahmad and N. A. Sheikh, On Characterization of nonuniform tight wavelet frameson local fields, Anal. Theory Appl.,34(2018), pp. 135-146, https://doi.org/10.4208/ata.2018.v34.n2.4

O. Ahmad, F. A. Shah and N. A. Sheikh, Gabor frames on non-Archimedean fields, International Journal of Geometric Methods in Modern Physics,15(2018) 1850079,pp. (17 pages), https://doi.org/10.1142/s0219887818500792

S. Albeverio, S. Evdokimov, and M. Skopina, p-adic nonorthogonal wavelet bases, Proc. Steklov Inst. Math.,265(2009), pp. 135-146, https://doi.org/10.1134/s0081543809020011

S. Albeverio, S. Evdokimov, and M. Skopina, p-adic multiresolution analysis andwavelet frames, J. Fourier Anal. Appl.,16(2010), pp. 693-714, https://doi.org/10.1007/s00041-009-9118-5

S. Albeverio, A. Khrennikov, and V. Shelkovich, Theory of p-adic Distributions:Linear and Nonlinear Models, Cambridge University Press, 2010.

S. Albeverio, R. Cianci, and A. Yu. Khrennikov, p-Adic valued quantization, p-Adic Numbers Ultrametric Anal. Appl. 1, pp. 91-104 (2009), https://doi.org/10.1134/s2070046609020010

J. J. Benedetto and R. L. Benedetto, A wavelet theory for local fields and relatedgroups, J. Geom. Anal.14(2004) pp. 423-456, https://doi.org/10.1007/bf02922099

P. G. Casazza and G. Kutyniok, Finite frames:Theory and Applications, Birkhauser, 2012.

E. Curry, Low-pass filters and scaling functions for multivariable wavelets. Canad. J.Math. 60(2008), pp. 334-347, https://doi.org/10.4153/cjm-2008-016-1

I. Daubechies, B. Han, A. Ron and Z.Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14 (1) (2003), pp. 1-46, https://doi.org/10.1016/s1063-5203(02)00511-0

S. Evdokimov and M. Skopina, 2-adic wavelet bases, Proc. Steklov Inst. Math.,266(2009), pp. S143-S154, https://doi.org/10.1134/s008154380906011x

Y. Farkov, Orthogonal wavelets on local ly compact abelian groups, Funct. Anal. Appl.,31(1997), pp. 294-296, https://doi.org/10.1007/bf02466067

Y. Farkov, Multiresolution Analysis and Wavelets on Vilenkin Groups, Facta Univer-sitatis (NIS), Ser.: Elec. Energ.,21(2008), pp. 309–325, https://doi.org/10.2298/fuee0803309f

J. P. Gabardo and M. Nashed, Nonuniform multiresolution analyses and spectralpairs, J. Funct. Anal.158(1998), pp. 209-241, https://doi.org/10.1006/jfan.1998.3253

J. P. Gabardo and X. Yu, Wavelets associated with nonuniform multiresolution anal-yses and one-dimensional spectral pairs, J. Math. Anal. Appl.,323(2006) pp. 798-817, https://doi.org/10.1016/j.jmaa.2005.10.077

R. F. Gundy, Low-pass filters, martingales, and multiresolution analyses. Appl. Com-put. Harmon. Anal.9(2) (2000), pp. 204-219, https://doi.org/10.1006/acha.2000.0320

E. Hernandez and G.Weiss, A first course on wavelets. Studies in Advanced Mathe-matics. CRC Press, Boca Raton, FL,1996.

H. K. Jiang, D.F. Li and N. Jin, Multiresolution analysis on local fields, J. Math.Anal. Appl. 294 (2004), pp. 523-532, https://doi.org/10.1016/j.jmaa.2004.02.026

A.Khrennikov and V.Shelkovich, Non-Haarp-adic wavelets and their application topseudo-differential operators and equations, Appl. Comput. Harmon. Anal.,28(2010),pp. 1-23, https://doi.org/10.1016/j.acha.2009.05.007

A. Khrennikov, V. Shelkovich, and M. Skopina, p-adic refinable functions andMRA-based wavelets, J. Approx. Theory.161(2009), pp. 226-238.

A. Khrennikov, K. Oleschko, M.J.C. Lopez, Application of p-adic wavelets to modelreaction-diffusion dynamics in random porous media. J. Fourier Anal. Appl.,22(2016),pp. 809-822, https://doi.org/10.1007/s00041-015-9433-y

A. Khrennikov, Modeling of Processes of Thinking in p-adic Coordinates[in Russian], Fizmatlit, Moscow (2004).

S. Kozyrev and A. Khrennikov, p-adic integral operators in wavelet bases, DokladyMath.,83(2011), pp. 209-212, https://doi.org/10.1134/s1064562411020220

S. Kozyrev, A. Khrennikov, and V. Shelkovich, p-Adic wavelets and their applications, Proc. Steklov Inst. Math.,285(2014), pp. 157-196, https://doi.org/10.1134/s0081543814040129

S. V. Kozyrev, Ultrametric analysis and interbasin kinetics, in: p-Adic Mathematical Physics(AIP Conf. Proc., Vol. 826, A. Yu. Khrennikov, Z. Rakic, and I. V. Volovich,eds.), AIP, Melville, New York (2006), pp. 121-128, https://doi.org/10.1063/1.2193116

W. C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal.,27(1996), pp. 305-312, https://doi.org/10.1137/s0036141093248049

W. C. Lang, Wavelet analysis on the Cantor dyadic group, Houston J. Math.,24(1998), pp. 533-544.

W. C. Lang, Fractal multiwavelets related to the cantor dyadic group, Int. J. Math.Math. Sci.21(1998), pp. 307-314, https://doi.org/10.1155/s0161171298000428

W. M. Lawton, Necessary and sufficient conditions for constructing orthonormalwavelet bases. J. Math. Phys.32(1991), pp. 57-61, https://doi.org/10.1063/1.529093

D. F. Li and H. K. Jian, The necessary condition and sufficient conditions for wavelet frame on local fields, J. Math. Anal. Appl.345(2008), pp. 500-510, https://doi.org/10.1016/j.jmaa.2008.04.031

S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases ofL2(R),Trans. Amer. Math. Soc.315(1989), pp. 69-87, https://doi.org/10.1090/s0002-9947-1989-1008470-5

K. Oleschko, A.Y. Khrennikov, Applications of p-adics to geophysics: Linear andquasilinear diffusion of water-in-oil and oil-in-water emulsions. Theor. Math Phys., 190(2017), pp. 154-163 .

M. Papadakis, H. Sikic, and G.Weiss, The characterization of low pass filters andsome basic properties of wavelets, scaling functions and related concepts, J. Fourier Anal.Appl.5(1999), pp. 495-521, https://doi.org/10.1007/bf01261640

E. Pourhadi, A. Khrennikov, R. Saadati, K. Oleschko, M.J. Correa Lopez, Solvability of the p-Adic Analogue of Navier-Stokes Equation via the Wavelet Theory.Entropy, (2019) 21, 1129.

A. San Antolin, Characterization of low pass filters in a multiresolution analysis.Studia Math.190(2) (2009), pp. 99-116, https://doi.org/10.4064/sm190-2-1

A. Ron and Z. Shen, Affine systems inL2(Rd): the analysis of the analysis operator,J. Funct. Anal., 148 (1997), pp. 408-447, https://doi.org/10.1006/jfan.1996.3079

F.A. Shah and O. Ahmad, Wave packet systems on local fields, Journal of Geometryand Physics,120(2017), pp. 5-18, https://doi.org/10.1016/j.geomphys.2017.05.015

F. A. Shah, O. Ahmad and A. Rahimi, Frames Associated with Shift Invariant Spaceson Local Fields, Filomat32(9) (2018), pp. 3097-3110, https://doi.org/10.2298/fil1809097s

F. A. Shah and Abdullah, Nonuniform multiresolution analysis on local fields ofpositive characteristic, Complex Anal. Opert. Theory,9(2015), pp. 1589-1608, https://doi.org/10.1007/s11785-014-0412-0

M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Prince-ton, NJ, 1975.

V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics(Series Sov. East Eur. Math., Vol. 1), World Scientific, Singapore(1994).

I.V. Volovich, p-Adic string,Class. Q. Grav., 4, L83- L87 (1987), https://doi.org/10.1088/0264-9381/4/4/003

I. V. Volovich, p-adic space–time and string theory,Theor. Math. Phys., 71, (1987),pp. 574-576, https://doi.org/10.1007/bf01017088

Downloads

Published

2021-11-19

How to Cite

Ahmad, O., Wani, A. H., Hazari, A. A., & Sheikh, N. (2021). Nonuniform low-pass filters on non Archimedean local fields. J. Numer. Anal. Approx. Theory, 50(1), 27–43. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1241

Issue

Section

Articles