Nonuniform low-pass filters on non Archimedean local fields
DOI:
https://doi.org/10.33993/jnaat501-1241Keywords:
Low pass filter, nonuniform multiresolution analysis, Fourier transform, local field, wavelet analysisAbstract
In real life application all signals are not obtained from uniform shifts; so there is a natural question regarding analysis and decompositions of this types of signals by a stable mathematical tool.
Gabardo and Nashed (J. Funct. Anal. 158:209-241, 1998) filled this gap by the concept of nonuniform multiresolution analysis. In this setting, the associated translation set \(\Lambda =\left\{ 0,r/N\right\}+2\,\mathbb Z\) is no longer a discrete subgroup of \(\mathbb R\) but a spectrum associated with a certain one-dimensional spectral pair and the associated dilation is an even positive integer related to the given spectral pair.
The main aim of this article is to provide the characterization of nonuniform low-pass filters on non-Archimedean local fields.
Downloads
References
O. Ahmad, M.Y. Bhat, N. A. Sheikh, Construction of Parseval Framelets Associated with GMRA on Local Fields of Positive Characteristic, Numerical Functional Analysis and optimization (2021), https://doi.org/10.1080/01630563.2021.1878370
O. Ahmad, N. Ahmad, Construction of Nonuniform Wavelet Frames on Non-Archimedean Fields, Math. Phy. Anal. and Geometry, 23(47) (2020).
O. Ahmad, N. A Sheikh, K. S Nisar, F. A. Shah, Biorthogonal Wavelets on Spectrum, Math. Methods in Appl. Sci, (2021) pp. 1-12, https://doi.org/10.1002/mma.7046.
O. Ahmad, Nonuniform Periodic Wavelet Frames on Non-Archimedean Fields, Annales Universitatis Mariae Curie-Sklodowska, sectio A - Mathematica, pp. 1-17, (2) (2020)
O. Ahmad, N. A Sheikh, Explicit Construction of Tight Nonuniform Framelet Packetson Local Fields, Operators and Matrices 15(1) (2021), pp. 131-149, https://doi.org/10.7153/oam-2021-15-10
O. Ahmad, N.A. Sheikh, Mobin Ahmad, Frames Associated with Shift Invariant Spaces on Positive Half Line, Acta Math. Sapientia, 13, 1 (2021) pp. 27-48
O. Ahmad, A.A.H. Ahmadini, M. Ahmad, Nonuniform Super Wavelets in L2(K), Problemy Analiza – Issues of Analysis 1129 (1) (2022).
O. Ahmad, N.A. Sheikh, F. A. Shah, Fractional Multiresolution Analysis and Associated Scaling functions in L2(R), Analyis and Mathematical Physics, (2021) 11:47, https://doi.org/10.1007/s13324-021-00481-9
O. Ahmad, N.A. Sheikh, Nonuniform Semiorthogonal wavelet Frames on Non-Archimedean Fields. Elec. Jour. Math. Anal. and Appl. 9(2) (2021), pp. 288-300.
O. Ahmad, N.A. Sheikh, Inequalities for Wavelet Frames with Composite Dilations in L2(Rn), Rocky Mountain J. Math. 51(1) (2021), pp. 31-41, http://doi.org/10.1216/rmj.2021.51.31
O. Ahmad, N.A. Sheikh, M. A. Ali, Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in L2(K), Afrika Math., (2020), https://doi.org/10.1007/s13370-020-00786-1
O. Ahmad and N. A. Sheikh, On Characterization of nonuniform tight wavelet frames on local fields, Anal. Theory Appl., 34 (2018), pp. 135-146, https://doi.org/10.4208/ata.2018.v34.n2.4
O. Ahmad, F. A. Shah and N. A. Sheikh, Gabor frames on non-Archimedean fields, International Journal of Geometric Methods in Modern Physics, 15(2018) 1850079, pp. (17 pages), https://doi.org/10.1142/s0219887818500792
S. Albeverio, S. Evdokimov, and M. Skopina, p-adic nonorthogonal wavelet bases, Proc. Steklov Inst. Math.,265(2009), pp. 135-146, https://doi.org/10.1134/s0081543809020011
S. Albeverio, S. Evdokimov, and M. Skopina, p-adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl.,16(2010), pp. 693-714, https://doi.org/10.1007/s00041-009-9118-5
S. Albeverio, A. Khrennikov, and V. Shelkovich, Theory of p-adic Distributions: Linear and Nonlinear Models, Cambridge University Press, 2010.
S. Albeverio, R. Cianci, and A. Yu. Khrennikov, p-Adic valued quantization, p-Adic Numbers Ultrametric Anal. Appl. 1, pp. 91-104 (2009), https://doi.org/10.1134/s2070046609020010
J. J. Benedetto and R. L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal. 14 (2004) pp. 423-456, https://doi.org/10.1007/bf02922099
P. G. Casazza and G. Kutyniok, Finite frames:Theory and Applications, Birkhauser, 2012.
E. Curry, Low-pass filters and scaling functions for multivariable wavelets. Canad. J. Math. 60 (2008), pp. 334-347, https://doi.org/10.4153/cjm-2008-016-1
I. Daubechies, B. Han, A. Ron and Z.Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14 (1) (2003), pp. 1-46, https://doi.org/10.1016/s1063-5203(02)00511-0
S. Evdokimov and M. Skopina, 2-adic wavelet bases, Proc. Steklov Inst. Math., 266 (2009), pp. S143-S154, https://doi.org/10.1134/s008154380906011x
Y. Farkov, Orthogonal wavelets on locally compact abelian groups, Funct. Anal. Appl., 31 (1997), pp. 294-296, https://doi.org/10.1007/bf02466067
Y. Farkov, Multiresolution Analysis and Wavelets on Vilenkin Groups, Facta Universitatis (NIS), Ser.: Elec. Energ.,21(2008), pp. 309–325, https://doi.org/10.2298/fuee0803309f
J. P. Gabardo and M. Nashed, Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal. 158 (1998), pp. 209-241, https://doi.org/10.1006/jfan.1998.3253
J. P. Gabardo and X. Yu, Wavelets associated with nonuniform multiresolution analyses and one-dimensional spectral pairs, J. Math. Anal. Appl., 323 (2006) pp. 798-817, https://doi.org/10.1016/j.jmaa.2005.10.077
R. F. Gundy, Low-pass filters, martingales, and multiresolution analyses. Appl. Comput. Harmon. Anal. 9 (2) (2000), pp. 204-219, https://doi.org/10.1006/acha.2000.0320
E. Hernandez and G.Weiss, A first course on wavelets. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL,1996.
H. K. Jiang, D.F. Li and N. Jin, Multiresolution analysis on local fields, J. Math. Anal. Appl. 294 (2004), pp. 523-532, https://doi.org/10.1016/j.jmaa.2004.02.026
A. Khrennikov and V. Shelkovich, Non-Haar p-adic wavelets and their application to pseudo-differential operators and equations, Appl. Comput. Harmon. Anal., 28 (2010), pp. 1-23, https://doi.org/10.1016/j.acha.2009.05.007
A. Khrennikov, V. Shelkovich, and M. Skopina, p-adic refinable functions and MRA-based wavelets, J. Approx. Theory.161 (2009), pp. 226-238, https://doi.org/10.1016/j.jat.2008.08.008
A. Khrennikov, K. Oleschko, M.J.C. Lopez, Application of p-adic wavelets to model reaction-diffusion dynamics in random porous media. J. Fourier Anal. Appl., 22 (2016), pp. 809-822, https://doi.org/10.1007/s00041-015-9433-y
A. Khrennikov, Modeling of Processes of Thinking in p-adic Coordinates [in Russian], Fizmatlit, Moscow (2004).
S. Kozyrev and A. Khrennikov, p-adic integral operators in wavelet bases, Doklady Math., 83 (2011), pp. 209-212, https://doi.org/10.1134/s1064562411020220
S. Kozyrev, A. Khrennikov, and V. Shelkovich, p-Adic wavelets and their applications, Proc. Steklov Inst. Math., 285 (2014), pp. 157-196, https://doi.org/10.1134/s0081543814040129
S. V. Kozyrev, Ultrametric analysis and interbasin kinetics, in: p-Adic Mathematical Physics (AIP Conf. Proc., Vol. 826, A. Yu. Khrennikov, Z. Rakic, and I. V. Volovich, eds.), AIP, Melville, New York (2006), pp. 121-128, https://doi.org/10.1063/1.2193116
W. C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal., 27 (1996), pp. 305-312, https://doi.org/10.1137/s0036141093248049
W. C. Lang, Wavelet analysis on the Cantor dyadic group, Houston J. Math., 24 (1998), pp. 533-544.
W. C. Lang, Fractal multiwavelets related to the cantor dyadic group, Int. J. Math. Math. Sci. 21 (1998), pp. 307-314, https://doi.org/10.1155/s0161171298000428
W. M. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases. J. Math. Phys. 32 (1991), pp. 57-61, https://doi.org/10.1063/1.529093
D. F. Li and H. K. Jian, The necessary condition and sufficient conditions for wavelet frame on local fields, J. Math. Anal. Appl. 345 (2008), pp. 500-510, https://doi.org/10.1016/j.jmaa.2008.04.031
S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R),Trans. Amer. Math. Soc. 315 (1989), pp. 69-87, https://doi.org/10.1090/s0002-9947-1989-1008470-5
K. Oleschko, A.Y. Khrennikov, Applications of p-adics to geophysics: Linear and quasilinear diffusion of water-in-oil and oil-in-water emulsions. Theor. Math Phys., 190 (2017), pp. 154-163 .
M. Papadakis, H. Sikic, and G.Weiss, The characterization of low pass filters and some basic properties of wavelets, scaling functions and related concepts, J. Fourier Anal. Appl. 5 (1999), pp. 495-521, https://doi.org/10.1007/bf01261640
E. Pourhadi, A. Khrennikov, R. Saadati, K. Oleschko, M.J. Correa Lopez, Solvability of the p-Adic Analogue of Navier-Stokes Equation via the Wavelet Theory.Entropy, (2019) 21, 1129.
A. San Antolin, Characterization of low pass filters in a multiresolution analysis. Studia Math. 190 (2) (2009), pp. 99-116, https://doi.org/10.4064/sm190-2-1
A. Ron and Z. Shen, Affine systems in L2(Rd): the analysis of the analysis operator,J. Funct. Anal., 148 (1997), pp. 408-447, https://doi.org/10.1006/jfan.1996.3079
F.A. Shah and O. Ahmad, Wave packet systems on local fields, Journal of Geometry and Physics, 120 (2017), pp. 5-18, https://doi.org/10.1016/j.geomphys.2017.05.015
F. A. Shah, O. Ahmad and A. Rahimi, Frames Associated with Shift Invariant Spaces on Local Fields, Filomat 32 (9) (2018), pp. 3097-3110, https://doi.org/10.2298/fil1809097s
F. A. Shah and Abdullah, Nonuniform multiresolution analysis on local fields of positive characteristic, Complex Anal. Operat. Theory, 9 (2015), pp. 1589-1608, https://doi.org/10.1007/s11785-014-0412-0
M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ, 1975.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Series Sov. East Eur. Math., Vol. 1), World Scientific, Singapore(1994).
I.V. Volovich, p-Adic string ,Class. Q. Grav., 4, L83- L87 (1987), https://doi.org/10.1088/0264-9381/4/4/003
I. V. Volovich, p-adic space–time and string theory, Theor. Math. Phys., 71, (1987), pp. 574-576, https://doi.org/10.1007/bf01017088
Published
Issue
Section
License
Copyright (c) 2021 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.