Some inequalities for a Stancu type operator via (1,1) box convex functions
DOI:
https://doi.org/10.33993/jnaat501-1242Keywords:
Stancu operator, box convex functionsAbstract
In this paper we introduce a Stancu type operator and we prove inequalities of Rașa's type.Downloads
References
U. Abel,An inequality involving Bernstein polynomials, J. Approx. Theory, 222 (2017), pp. 1–7, https://doi.org/10.1016/j.jat.2017.05.006
U. Abel, D. Leviatan, An extension of Rasa’s conjecture to q-monotone functions, Results Math., 75(4) (2020), pp. 181–193, https://doi.org/10.1007/s00025-020-01308-y
S. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhauser, Boston, 2008, https://doi.org/10.1007/978-0-8176-4703-2
S. Gal, P. Niculescu, A new look at Popoviciu’s concept for functions of two variables, J. Math. Anal. Appl., 479(2019), pp. 903–925, https://doi.org/10.1016/j.jmaa.2019.06.057
B. Gavrea, On a convexity problem in connection with some linear operators, J. Math. Anal. Appl., 461 (2018), pp. 319–332, https://doi.org/10.1016/j.jmaa.2018.01.010
B. Gavrea, On a convexity problem with applications to Mastroianni type operators, Math. Inequal. Appl., 23 (2020), pp. 765–773, https://doi.org/10.7153/mia-2020-23-64
B. Gavrea, I. Gavrea, An inequality involving Bernstein polynomials and box-convex functions, submitted.
J. Mrowiec, T. Rajba, S. Wasowicz, A solution to the problem of Rasa connected with Bernstein polynomials, J. Math. Anal. Appl., 446 (2017), pp. 864–878, https://doi.org/10.1016/j.jmaa.2016.09.009
T. Popoviciu, Sur quelques proprietes des fonctions d’une ou de deux variables reelles, Theses de l’entre-deux-guerres, Faculte des Sciences de Paris, (1933).
I. Rasa, Problem 2, pp. 164. In: Report of meeting in: Conference on Ulam’s Type Stability, Rytro, Poland, June 2–6, 2014, Ann. Paedagog. Croc. Stud. Math., 13 (2014), pp. 139-169, https://doi.org/10.2478/aupcsm-2014-0011
D.D. Stancu, On a generalization of the Bernstein polynomials, Studia Univ. Babes-Bolyai Math (Cluj), 14 (1969), pp. 31–45.
D.D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20 (1983), pp. 211–229, https://doi.org/10.1007/BF02575593
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.