Ball convergence of Potra-Ptak-type method with optimal fourth order of convergence

Authors

  • Ioannis K. Argyros Cameron University, USA
  • Santhosh George NIT Karnataka, India

DOI:

https://doi.org/10.33993/jnaat501-1247

Keywords:

Potra-Ptak-type method, Newton's method, order of convergence, local convergence
Abstract views: 197

Abstract

We present a local convergence analysis Potra-Ptak-type method with optimal fourth order of convergence in order to approximate a solution of a nonlinear equation. In earlier studies such as [1], [5]-[28] hypotheses up to the fourth derivative are used.

In this paper we use hypotheses up to the first derivative only, so that the applicability of these methods is extended under weaker hypotheses. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.

Downloads

Download data is not yet available.

Author Biography

Ioannis K. Argyros, Cameron University, USA

Full tenured Professor of Mathematics.

References

S. Amat, M.A. Hern ́andez, N. Romero, A modified Chebyshev’s iterative methodwith at least sixth order of convergence, Appl. Math. Comput. 206 (1), 164-174 (2008). https://doi.org/10.1016/j.amc.2008.08.050

S. Amat, S. Busquier, S. Plaza, Dynamics of the King’s and Jarratt iterations, Aequationes. Math. 69, (2005), 212-213, https://doi.org/10.1007/s00010-004-2733-y

I.K. Argyros, Convergence and Application of Newton-type Iterations, Springer, 2008.

I.K. Argyros and Said Hilout,, Computational methods in nonlinear Analysis, World Scientific Publ. Co. , New Jersey, USA, 2013.

I.K. Argyros D. Chen, Q. Quian, The Jarratt method in Banach space setting, J. Comput. Appl. Math. 51 (1994), pp. 103–106, https://doi.org/10.1016/0377-0427(94)90093-0

V. Candela, A. Marquina, Recurrence relations for rational cubic methods I: The Halley method, Computing, 44, 169-184(1990), https://doi.org/10.1016/0377-0427(94)90093-0

J. Chen, Some new iterative methods with three-order convergence, Appl. Math. Comput. 181, (2006), 1519-1522, https://doi.org/10.1016/j.amc.2006.02.037

C. Chun, B. Neta, M. Scott, Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations, Appl. Math. Comput. 227 (2014), pp. 567–592, https://doi.org/10.1016/j.amc.2013.11.017

A. Cordero, J. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas, Appl. Math. Comput. 190 (2007), pp. 686–698, https://doi.org/10.1016/j.amc.2007.01.062

A. Cordero, J. Maimo, J. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family, Appl. Math. Lett. 26 (2013), pp. 842–848, https://doi.org/10.1016/j.aml.2013.03.012

A. Cordero, A. Magrenan, C. Quemada, J.R. Torregrosa, Stability study of eight-order iterative methods for solving nonlinear equations, J. Comput. Appl. Math (to appear).

A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrossa, Steffensen type methods for solving non-linear equations, J. Comput. Appl. Math. 236 (2012), pp. 3058–3064, https://doi.org/10.1016/j.cam.2010.08.043

A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrossa, New modifications of Potra-Ptak’s method with optimal fourth and eight orders of convergence, J. Comput. Appl. Math. 234 (2010), pp. 2969–2976, https://doi.org/10.1016/j.cam.2010.04.009

J.A. Ezquerro, M.A. Hernandez, A uniparametric Halley-type iteration with free second derivative, Int. J.Pure and Appl. Math. 6, 1, (2003), pp. 99–110.

J.A. Ezquerro, M.A. Hern ́andez, New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49 (2009), pp. 325–342, https://doi.org/10.1007/s10543-009-0226-z

M. Frontini, E. Sormani, Some variants of Newton’s method with third order convergence, Appl. Math. Comput. 140 (2003), pp. 419–426, https://doi.org/10.1016/s0096-3003(02)00238-2

J.M. Gutierrez, M.A. Hernandez, Recurrence relations for the super-Halley method, Comput. Math. Appl. 36 (7), (1998), pp. 1–8, https://doi.org/10.1016/s0898-1221(98)00168-0

M.A. Hernandez, M.A. Salanova, Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math (1) (1999), pp. 29–40.

J.P. Jaiswal, A new third-order derivative free method for solving nonlinear equations, Universal J. Appl. Math. 12 (2013), pp. 131–135, https://doi.org/10.13189/ujam.2013.010215

R.F. King, A family of fourth-order methods for nonlinear equations, SIAM. J. Numer. Anal. 10 (1973), pp. 876–879, https://doi.org/10.1137/0710072

A.K. Maheshwari,A fourth order iterative method for solving nonlinear equations, Appl. Math. Comput. 211(2009), pp. 383–391, https://doi.org/10.1016/j.amc.2009.01.047

S.K. Parhi, D.K. Gupta, Semi-local convergence of a Stirling-like method in Banach spaces, Int. J. Comput. Methods 7 (02) (2010) pp. 215–228, https://doi.org/10.1142/s0219876210002210

M.S. Petkovic, B. Neta, L. Petkovic, J. Dzunic, Multipoint methods for solving nonlinear equations, Elsevier, 2013.

F.A. Potra, V. Ptak, Nondiscrete induction and iterative processes, Research Notes in Mathematics, Vol. 103, Pitman Publ., Boston, MA, 1984.

L.B. Rall, Computational solution of nonlinear operator equations, Robert E. Krieger, New York (1979).

H. Ren, Q. Wu, W. Bi, New variants of Jarratt method with sixth-order convergence, Numer. Algorithms 52 (4) (2009). pp. 585–603, https://doi.org/10.1007/s11075-009-9302-3

W.C. Rheinboldt,An adaptive continuation process for solving systems of nonlinear equations, In: Mathematical models and numerical methods (A.N.Tikhonov et al. eds.) pub.3, (19), pp. 129–142 Banach Center, Warsaw Poland.

J.F. Traub,Iterative methods for the solution of equations, Prentice Hall Englewood Cliffs, New Jersey, USA, 1964.

S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), pp. 87–93, https://doi.org/10.1016/s0893-9659(00)00100-2

X. Wang, J. Kou,Convergence for modified Halley-like methods with less computation of inversion, J. Diff. Eq. and Appl. 19, 9 (2013), pp. 1483–1500, https://doi.org/10.1080/10236198.2012.761979

Downloads

Published

2021-11-19

How to Cite

Argyros, I. K., & George, S. (2021). Ball convergence of Potra-Ptak-type method with optimal fourth order of convergence. J. Numer. Anal. Approx. Theory, 50(1), 44–51. https://doi.org/10.33993/jnaat501-1247

Issue

Section

Articles