A note on the unique solvability condition for generalized absolute value matrix equation
DOI:
https://doi.org/10.33993/jnaat511-1263Keywords:
Generalized absolute value matrix equation, unique solution, singular value, spectral radiusAbstract
The spectral radius condition
\[\rho (\vert A^{-1} \vert\cdot \vert B \vert)<1\]
for the unique solvability of generalized absolute value matrix equation (GAVME)
\[AX + B \vert X \vert = D\]
is provided. For some instances, our condition is superior to the earlier published singular values conditions \(\sigma_{\max}(\vert B \vert)<\sigma_{\min}(A)\) [M. Dehghan, 2020] and \(\sigma_{\max}(B)<\sigma_{\min}(A)\) [Kai Xie, 2021]. For the validity of our condition, we also provided an example.
Downloads
References
M. Achache, On the unique solvability and numerical study of absolute value equations, Journal of Numerical Analysis and Approximation Theory, 48(2), pp.112-121 (2019). https://doi.org/10.33993/jnaat482-1182 DOI: https://doi.org/10.33993/jnaat482-1182
N Anane, M. Achache, Preconditioned conjugate gradient methods for absolute value equations, Journal of Numerical Analysis and Approximation Theory, 49(1), pp.3-14 (2020). https://doi.org/10.33993/jnaat491-1197 DOI: https://doi.org/10.33993/jnaat491-1197
M. Dehghan, A. Shirilord, Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation, Applied Numerical Mathematics, 158, pp.425-438 (2020). https://doi.org/10.1016/j.apnum.2020.08.001 DOI: https://doi.org/10.1016/j.apnum.2020.08.001
T. Lotfi, H. Veiseh, A note on unique solvability of the absolute value equation, J. Linear. Topological. Algebra 2,77-81, (2013).
O.L. Mangasarian, R.R. Meyer, Absolute value equations, Linear Algebra Appl., 419, 359-367 (2006). https://doi.org/10.1016/j.laa.2006.05.004 DOI: https://doi.org/10.1016/j.laa.2006.05.004
O.L. Mangasarian, Absolute value programming, Comput. Optim. Appl., 36(1), 43-53 (2007). https://doi.org/10.1007/s10589-006-0395-5 DOI: https://doi.org/10.1007/s10589-006-0395-5
J. Rohn, A theorem of the alternatives for the equation Ax + B|x| = b, Linear and Multilinear Algebra, 52:6, 421-426 (2004). https://doi.org/10.1080/0308108042000220686. DOI: https://doi.org/10.1080/0308108042000220686
S.L. Wu, P. Guo, On the unique solvability of the absolute value equation, J. Optim. Theory Appl., 169, 705-712 (2016). https://doi.org/10.1007/s10957-015-0845-2 DOI: https://doi.org/10.1007/s10957-015-0845-2
S.L. Wu, C.X. Li, The unique solution of the absolute value equations, Applied Mathematics Letters, Volume 76, 195-200 (2018). https://doi.org/10.1016/j.aml.2017.08.012 DOI: https://doi.org/10.1016/j.aml.2017.08.012
S.L. Wu, C.X. Li, A note on unique solvability of the absolute value equation, Optim. Lett., 14, 1957–1960 (2019). https://doi.org/10.1007/s11590-019-01478-x DOI: https://doi.org/10.1007/s11590-019-01478-x
S.L. Wu, S. Shen, On the unique solution of the generalized absolute value equation, Optim. Lett., 15, 2017-2024 (2021). https://doi.org/10.1007/s11590-020-01672-2 DOI: https://doi.org/10.1007/s11590-020-01672-2
K. Xie, On the Unique Solvability of the Generalized Absolute Value Matrix Equation, American Journal of Applied Mathematics, 9(4), p.104 (2021). https://doi.org/10.11648/j.ajam.20210904.12 DOI: https://doi.org/10.11648/j.ajam.20210904.12
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Shubham Kumar, . Deepmala
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Funding data
-
Ministry of Education, India
Grant numbers MA19S43033021