Baskakov-Kantorovich operators reproducing affine functions: inverse results
DOI:
https://doi.org/10.33993/jnaat511-1264Keywords:
Baskakov-Kantorovich operatorsrators, polynomial weighted spaces, strong inverse resultsAbstract
In a previous paper the author presented a Kantorovich modification of Baskakov operators which reproduce affine functions and he provided an upper estimate for the rate of convergence in polynomial weighted spaces.
In this paper, for the same family of operators, a strong inverse inequality is given for the case of approximation in norm.
Downloads
References
J. Bustamante, Baskakov-Kantorovich operators reproducing affine functions, Stud. Univ. Babe s-Bolyai Math., 66 (2021) no. 4, 739-756. http://dx.doi.org/10.24193/subbmath.2021.4.11 DOI: https://doi.org/10.24193/subbmath.2021.4.11
J. Bustamante, A. Carrillo-Zentella, J.M. Quesada, Direct and strong converse theorems for a general sequence of positive linear operators, Acta Math. Hungar., 136 (2012) nos. 1-2, 90-106. https://doi.org/10.1007/s10474-012-0196-5 DOI: https://doi.org/10.1007/s10474-012-0196-5
J. Bustamante, J. Merino-Garc ıa, J.M. Quesada, Baskakov operators and Jacobi weights: pointwise estimates, J. Inequal. Appl., 2021, art. no. 119, 17 pp. https://doi.org/10.1186/s13660-021-02653-4 DOI: https://doi.org/10.1186/s13660-021-02653-4
Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, New York, 1987. DOI: https://doi.org/10.1007/978-1-4612-4778-4
G. Feng, Direct and inverse approximation theorems for Baskakov operators with the Jacobi-type weight, Abstr. Appl. Anal., (2011), art. id. 101852, 13 pp. https://doi.org/10.1155/2011/101852 DOI: https://doi.org/10.1155/2011/101852
Sh. Guo, Q. Qi, Strong converse inequalities for Baskakov operators, J. Approx. Theory, 124 (2003) no. 2, 219-231. https://doi.org/10.1016/S0021-9045(03)00119-9 DOI: https://doi.org/10.1016/S0021-9045(03)00119-9
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jorge Bustamante
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.