On general fixed point method based on matrix splitting for solving linear complementarity problem


  • Bharat Kumar Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
  • Deepmala Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
  • Arup Kumar Das Indian Statistical Institute, Kolkata, India




Linear complementarity problems, Matrix splitting, Convergence, \(H_{ }\)-matrix, P-matrix
Abstract views: 251


In this article, we introduce a modified fixed point method to process the large and sparse linear complementarity problem (LCP) and formulate an equivalent fixed point equation for the LCP and show the equivalence. Also, we provide convergence conditions when the system matrix is a \(P\)-matrix and two sufficient convergence conditions when the system matrix is an \(H_+\)-matrix. To show the efficiency of our proposed method, we illustrate two numerical examples for different parameters.


Download data is not yet available.


R.Ali, I. Khan, A. Ali and A. Mohamed, Two new generalized iteration methods for solving absolute value equations using M -matrix. AIMS Mathematics, 7(5), 8176-8187 (2022). https://doi.org/10.3934/math.2022455 DOI: https://doi.org/10.3934/math.2022455

A. K. Das, Properties of some matrix classes based on principal pivot transform. Annals of Operations Research, 243, 05 (2014). https://doi.org/10.1007/s10479-014-1622-6 DOI: https://doi.org/10.1007/s10479-014-1622-6

A. K. Das, R. Jana and Deepmala, Finiteness of criss cross method in complementarity problem. In International Conference on Mathematics and Computing, 170-180, Springer (2017). https://doi.org/10.1007/978-981-10-4642-1_15 DOI: https://doi.org/10.1007/978-981-10-4642-1_15

A. K. Das, R. Jana and Deepmala. On generalized positive subdefinite matrices and interior point algorithm. In Frontiers in Optimization: Theory and Applications, 3–16. Springer, (2016). https://doi.org/10.1007/978-981-10-7814-9_1 DOI: https://doi.org/10.1007/978-981-10-7814-9_1

A. Dutta, R. Jana, and A. K. Das, On column competent matrices and linear complementarity problem. In Proceedings of the Seventh International Conference on Mathematics and Computing, pages 615-625. Springer, (2022). https://doi.org/10.1007/978-981-16-6890-6_46 DOI: https://doi.org/10.1007/978-981-16-6890-6_46

A. Frommer, D. B. Szyld, H-splittings and two-stage iterative methods. Numer. Math. 63, 345-356 (1992). https://doi.org/10.1007/BF01385865 DOI: https://doi.org/10.1007/BF01385865

R. Jana, A. K. Das and A. Dutta. On hidden z-matrix and interior point algorithm. OPSEARCH, 56(09) (2019). https://doi.org/10.1007/s12597-019-00412-0 DOI: https://doi.org/10.1007/s12597-019-00412-0

S. K. Neogy, A. K. Das and R. Bapat, Optimization models with economic and game theoretic applications. Annals of operation Research, 243(07) (2016). https://doi.org/10.1007/s10479-016-2250-0 DOI: https://doi.org/10.1007/s10479-016-2250-0

S. K. Neogy, A. K. Das and R. Bapat, Modeling, compution and optimization. 11 (2021).

Neogy S.K., Das A.K., Sinha S., and Gupta A., On a mixture class of stochastic game with ordered field property. In Mathematical programming and game theory for decision making, pages 451-477. World Scientific, (2008). https://doi.org/10.1142/9789812813220_0025 DOI: https://doi.org/10.1142/9789812813220_0025

Z. Z. Bai, Modulus − based matrix splitting iteration methods for linear complementarity problems. Numerical Linear Algebra with Applications, 17(6), 917-933 (2010). https://doi.org/10.1002/nla.680 DOI: https://doi.org/10.1002/nla.680

Z. Z. Bai and Evans D., Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods. Reseaux et Systemes Repartis, Calculateurs Paralleles, 13, 125-154 (2001).

A. Berman and R. J. Plemmons, Nonnegative Matrices in the mathematical Sciences, SIAM Publisher, Philadelphia, (1994). DOI: https://doi.org/10.1137/1.9781611971262

R. W. Cottle, J. S. Pang and R. E. Stone, The linear complementarity Problem. Academic Press London, (1992).

C. W. Cryer, The method of Christopherson for solving free boundary problems for infinite journal bearing by means of finite differences. Mathematics of computation, 25(115), 435-443 (1971). DOI: https://doi.org/10.1090/S0025-5718-1971-0298961-7

M. Dehghan and M. Hajarian, Convergence of SSOR methods for linear complementarity problems. Operations Research Letters, 37(3), 219-223 (2009). https://doi.org/10.1016/j.orl.2009.01.013 DOI: https://doi.org/10.1016/j.orl.2009.01.013

Xi Fang Ming, General fixed point method for solving the linear complementarity problem. AIMS Mathematics, 6(11), 11904-11920, (2021). https://doi.org/10.3934/math.2021691 DOI: https://doi.org/10.3934/math.2021691

A. Hadjidimos and L. L .Zhang, Comparison of three classes of algorithms for the solution of the linear complementarity problem with an H+-matrix. Journal of Computational and Applied Mathematics, 336, 175-191 (2018). https://doi.org/10.1016/j.cam.2017.12.028 DOI: https://doi.org/10.1016/j.cam.2017.12.028

Han Xian Li, Yuan Dong Jin and Jiang Shan., Two SSOR Iterative Formats for Solving Linear Complementarity Problems. International Journal of Information Technology and Computer Science, (2011). DOI: https://doi.org/10.5815/ijitcs.2011.02.06

Lemke, E. Carlton and Joseph T. Howson, Jr. Equilibrium points of bimatrix games. Journal of the Society for industrial and Applied Mathematics 12, no. 2 (1964): 413-423. https://doi.org/10.1137/0112033 DOI: https://doi.org/10.1137/0112033

K. G. Murthy and F. T. Yu, Linear complementarity, linear and nonlinear programming. Berlin: Heldermann, 3, 447-448 (1988).

H. S. Najafi and S. A. Edalatpanah, Modification of iterative methods for solving linear complementarity problems. Engineering Computations, 30(7), 910-923 (2013). https://doi.org/10.1108/EC-10-2011-0131 DOI: https://doi.org/10.1108/EC-10-2011-0131

S. K. Neogy , A. K. Das, and A. Gupta, Generalized principal pivot transforms, complementarity theory and their applications in stochastic games. Optimization Letters, 6(2) 339-356, (2012). https://doi.org/10.1007/s11590-010-0261-3 DOI: https://doi.org/10.1007/s11590-010-0261-3

A. A. Raimondi and J. Boyd, A solution for the finite journal bearing and its application to analysis and design:III. ASLE Transactions, 1(1), 194-209 (1958). https://doi.org/10.1080/05698195808972330 DOI: https://doi.org/10.1080/05698195808972330

Xu M.H. and G. F. Laun, A rapid algorithm for a class of linear complementarity problems. Applied mathematics and computation, 188(2), 1647-1655 (2007). https://doi.org/10.1016/j.amc.2006.11.184 DOI: https://doi.org/10.1016/j.amc.2006.11.184

sc L. L. Zhang and Z. R. Ren, Improved convergence theorems of Modulus-based matrix splitting iteration methods for linear complementarity problems. Applied Mathematics Letters, 26(6), 638-642 (2013). https://doi.org/10.1016/j.aml.2013.01.001 DOI: https://doi.org/10.1016/j.aml.2013.01.001

H. Zheng, Li W. and S. Vong, A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems. Numerical Algorithms, 74(1), 137-152 (2017). https://doi.org/10.1007/s11075-016-0142-7 DOI: https://doi.org/10.1007/s11075-016-0142-7




How to Cite

Kumar, B., Deepmala, & Das, A. K. (2022). On general fixed point method based on matrix splitting for solving linear complementarity problem. J. Numer. Anal. Approx. Theory, 51(2), 189–200. https://doi.org/10.33993/jnaat512-1285




Funding data