Quenching for discretizations of a semilinear parabolic equation with nonlinear boundary outflux
DOI:
https://doi.org/10.33993/jnaat522-1325Keywords:
Nonlinear parabolic equations, Nonlinear boundary outflux, Semidiscretizations, Numerical quenching, Quenching rateAbstract
In this paper, we study numerical approximations of a semilinear parabolic problem in one-dimension, of which the nonlinearity appears both in source term and in Neumann boundary condition. By a semidiscretization using finite difference method, we obtain a system of ordinary differential equations which is an approximation of the original problem. We obtain some conditions under which the positive solution of our system quenches in a finite time and estimate its semidiscrete quenching time. Convergence of the numerical quenching time to the theoretical one is established. Next, we show that the quenching rate of the numerical scheme is different from the continuous one. Finally, we give some numerical results to illustrate our analysis.
Downloads
References
L. M. Abia, J. C. Lopez-Marcos and J. Martınez , Blow-up for semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 20 (1996) no. 1, pp. 145-156. https://doi.org/10.1016/0168-9274(95)00122-0 DOI: https://doi.org/10.1016/0168-9274(95)00122-0
K. A. Adou, K. A. Toure and A. Coulibaly, On the numerical quenching time at blow-up, Adv. Math., Sci. J., 8 (2019) no. 2, pp. 71-85, from http://research-publication.com/wp-content/uploads/2019/09/AMSJ-2019-N2-3.pdf
A. C. Aitken, On Bernoulli’s numerical solution of algebraic equations, Proc. R. Soc. Edinburgh, 46 (1926), pp. 289-305. https://doi.org/10.1017/S0370164600022070 DOI: https://doi.org/10.1017/S0370164600022070
L. A. Assale, T. K. Boni and D. Nabongo , Numerical blow-up time for a semilinear parabolic equation with nonlinear boundary conditions, J. Appl. Math., 2008 (2008), pp. 29. https://doi.org/10.1155/2008/753518, id/No 753518 DOI: https://doi.org/10.1155/2008/753518
T. K. Boni and D. Nabongo, Numerical quenching for a nonlinear diffusion equation with a singular boundary condition., Bull. Belg. Math. Soc. - Simon Stevin, 16 (2009) no. 2, pp. 289-303. https://doi.org/10.36045/bbms/1244038140 DOI: https://doi.org/10.36045/bbms/1244038140
K. Deng and C. A. Roberts , Quenching for a diffusive equation with a concentrated singularity, Differ. Integral Equ., 10 (1997) no. 2, pp. 369-379. https://doi.org/10.57262/die/1367526343 DOI: https://doi.org/10.57262/die/1367526343
K. Deng and C-L. Zhao, Blow-up versus quenching, Commun. Appl. Anal., 7 (2003) no. 1, pp. 87-100, from https://www.researchgate.net/publication/266607632
J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6 (1980), pp. 19-26. https://doi.org/10.1016/0771-050X(80)90013-3 DOI: https://doi.org/10.1016/0771-050X(80)90013-3
K. B. Edja, K. A. Toure and B. J-C. Koua, Numerical quenching of a heat equation with nonlinear boundary conditions, J. Nonlinear Sci. Appl., 13 (2020), pp. 65-74. https://doi.org/10.22436/jnsa.013.01.06 DOI: https://doi.org/10.22436/jnsa.013.01.06
A. Ganon, M. M. Taha and A. K. Toure, Numerical blow-up on whole domain for a quasilinear parabolic equation with nonlinear boundary condition, Adv. Math., Sci. J., 9 (2020) no. 1, pp. 49-58. https://doi.org/10.37418/amsj.9.1.5 DOI: https://doi.org/10.37418/amsj.9.1.5
E. Hairer, S. P. Nørsett and G. Wanner, Solving ordinary differential equations. I: Nonstiff problems, Springer Ser. Comput. Math., vol 8, 2nd ed. Berlin: Springer-Verlag, 1993. https://doi.org/10.1007/978-3-540-78862-1 DOI: https://doi.org/10.1007/978-3-540-78862-1
C. Hirota and K. Ozawa, Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations - an application to the blow-up problems of partial differential equations, J. Comput. Appl. Math., 193 (2006) no. 2, pp. 614-637. https://doi.org/10.1016/j.cam.2005.04.069 DOI: https://doi.org/10.1016/j.cam.2005.04.069
H. Kawarada, On solutions of initial-boundary problem for ut = uxx + 1/(1−u), Publ. Res. Inst. Math. Sci., 10 (1975), pp. 729-736. https://doi.org/10.2977/prims/1195191889 DOI: https://doi.org/10.2977/prims/1195191889
D. Nabongo and T. K. Boni, Numerical quenching solutions of localized semi-linear parabolic equation, Bol. Mat. (N.S.), 14 (2007) no. 2, pp. 92-109, from https://revistas.unal.edu.co/index.php/bolma/article/view/40463
D. Nabongo and T. K. Boni, Numerical quenching for a semilinear parabolic equation, Math. Model. Anal., 13 (2008) no. 4, pp. 521-538. https://doi.org/10.3846/1392-6292.2008.13. DOI: https://doi.org/10.3846/1392-6292.2008.13.521-538
K. C. N’Dri, K. A. Tour e and G. Yoro, Numerical blow-up time for a parabolic equation with nonlinear boundary conditions, Int. J. Numer. Methods Appl., 17 (2018) no. 3-4, pp. 141-160. https://doi.org/10.17654/NM017340141 DOI: https://doi.org/10.17654/NM017340141
K. C. N’Dri, K. A. Toure and G. Yoro, Numerical quenching versus blow-up for a nonlinear parabolic equation with nonlinear boundary outflux, Adv. Math., Sci. J., 9 (2020) no. 1, pp. 151-171. https://doi.org/10.37418/amsj.9.1.14 DOI: https://doi.org/10.37418/amsj.9.1.14
C. V. Pao, Quasilinear parabolic and elliptic equations with nonlinear boundary conditions, Nonlinear Anal., Theory Methods Appl., 66 (2007) no. 9, pp. 639-662. https://doi.org/10.1016/j.na.2005.12.007 DOI: https://doi.org/10.1016/j.na.2005.12.007
T. Salin, On quenching with logarithmic singularity, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 52 (2003) no. 1, pp. 261-289. https://doi.org/10.1016/S0362-546X(02)00110-4 DOI: https://doi.org/10.1016/S0362-546X(02)00110-4
B. Selcuk and N. Ozalp, The quenching behavior of a semilinear heat equation with a singular boundary outflux, Q. Appl. Math., 72 (2014) no. 4, pp. 747-752. https://doi.org/10.1090/S0033-569X-2014-01367-9 DOI: https://doi.org/10.1090/S0033-569X-2014-01367-9
J. Wu, W. H. Hui and H. Ding, Arc-length method for differential equations, Appl. Math. Mech., Engl. Ed., 20 (1999) no. 8, pp. 936-942. https://doi.org/10.1007/BF02452494 DOI: https://doi.org/10.1007/BF02452494
Y. Zhi, The boundary quenching behavior of a semilinear parabolic equation, Appl. Math. Comput., 218 (2011) no. 2, pp. 233-238. https://doi.org/10.1016/j.amc.2011.05.002 DOI: https://doi.org/10.1016/j.amc.2011.05.002
Y. Zhi and C. Mu, The quenching behavior of a nonlinear parabolic equation with nonlinear boundary outflux, Appl. Math. Comput., 184 (2007) no. 2, pp. 624-630. https://doi.org/10.1016/j.amc.2006.06.061 DOI: https://doi.org/10.1016/j.amc.2006.06.061
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kouakou Cyrille N'Dri
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.