Nonlinear random extrapolation estimates of \(\pi\) under Dirichlet distributions


  • Shasha Wang Department of Mathematics and Physics, Shijiazhuang Tiedao University, China
  • Zecheng Li Questrom School of Business, Boston University, USA
  • Wen-Qing Xu Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, China & Department of Mathematics and Statistics, California State University Long Beach, USA



Random polygons, Nonlinear extrapolations, Dirichlet distribution, Central limit theorems, Cram\'{e}r's theorem
Abstract views: 61


We construct optimal nonlinear extrapolation estimates of \(\pi\) based on random cyclic polygons generated from symmetric Dirichlet distributions. While the semiperimeter \( S_n \) and the area \( A_n \) of such random inscribed polygons and the semiperimeter (and area) \( S_n' \) of the corresponding random circumscribing polygons are known to converge to \( \pi \) w.p.\(1\) and their distributions are also asymptotically normal as \( n \to \infty \), we study in this paper nonlinear extrapolations of the forms \( \mathcal{W}_n = S_n^{\alpha} A_n^{\beta} S_n'^{\, \gamma} \) and \( \mathcal{W}_n (p) = ( \alpha S_n^p + \beta A_n^p + \gamma S_n'^{\, p} )^{1/p} \) where \( \alpha + \beta + \gamma = 1 \) and \( p \neq 0 \). By deriving probabilistic asymptotic expansions with carefully controlled error estimates, we show that \( \mathcal{W}_n \) and \( \mathcal{W}_n (p) \) also converge to \( \pi \) w.p.\(1\) and are asymptotically normal. Furthermore, to minimize the approximation error associated with \( \mathcal{W}_n \) and \( \mathcal{W}_n (p) \), the parameters must satisfy the optimality condition \( \alpha + 4 \beta - 2 \gamma = 0 \). Our results generalize previous work on nonlinear extrapolations of \( \pi \) which employ inscribed polygons only and the vertices are also assumed to be independently and uniformly distributed on the unit circle.


Download data is not yet available.


M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover, 1970.

N. Balakrishnan, V.B. Nevzorov, A Primer on Statistical Distributions, Wiley, 2003. DOI:

P. Beckmann, A History of π, Fifth edition, The Golem Press, 1982.

C. Belisle, On the polygon generated by n random points on a circle, Statist. Probab. Lett., 81 (2011), pp. 236–242. DOI:

P. Billingsley, Probability and Measure, Third edition, Wiley, 1995.

D.A. Darling, On a class of problems related to the random division of an interval, Ann. Math. Statistics, 24 (1953), pp. 239-253. DOI:

B. Efron, The convex hull of a random set of points, Biometrika, 52 (1965), pp. 331–343. DOI:

W. Feller, An Introduction to Probability Theory and its Applications, vol. II, Wiley, 1966.

T.S. Ferguson, A Course in Large Sample Theory, Chapman & Hall, New York, 1996. DOI:

T. Hsing, On the asymptotic distribution of the area outside a random convex hull in a disk, Ann. Appl. Probab, 4 (1994) no. 2, pp. 478–493. DOI:

I. Hueter, The convex hull of a normal sample, Adv. Appl. Probab, 26 (1994) no. 4, pp. 855–875. DOI:

D.C. Joyce, Survey of extrapolation processes in numerical analysis, SIAM Rev., 13 (1971), pp. 435–490. DOI:

T. Li, Essays about π, Higher Education Press, 2007 (Chinese).

R. Pyke, Spacings, J. Roy. Statist. Soc. Ser. B, 27 (1965), pp. 395–449. DOI:

P. Rabinowitz, Extrapolation methods in numerical integration, Numer. Algor., 3 (1992), pp. 17–28. DOI:

A. Renyi, R. Sulanke, ̈Uber die konvexe Hulle von n zufallig gewahlten Punkten I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2 (1963), pp. 75–84. DOI:

A. Renyi, R. Sulanke, ̈Uber die konvexe Hulle von n zufallig gewahlten Punkten II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 3 (1964), pp. 138–147. DOI:

R.J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, 1980. : DOI:

T. Tang, Computational mathematics originated from the computation of π (Chinese), Higher Education Press, 2018.

V. Vu, Central limit theorems for random polytopes in a smooth convex set, Adv. Math., 207 (2006) no. 1, pp. 221–243. DOI:

S. Wang, W.-Q. Xu, Random cyclic polygons from Dirichlet distributions and approximations of π, Statist. Probab. Lett., 140 (2018), pp. 84–90. DOI:

S. Wang, W.-Q. Xu, J. Liu, Random polygons and optimal extrapolation estimates of π, Stat. Optim. Inf. Comput., 9 (2021), pp. 241–249. DOI:

W.-Q. Xu, Extrapolation methods for random approximations of π, J. Numer. Math. Stoch., 5 (2013), pp. 81–92.

W.-Q. Xu, Random circumscribing polygons and approximations of π, Statist. Probab. Lett., 106 (2015), pp. 52–57. DOI:

W.-Q. Xu, L. Meng, Y. Li, Random polygons and estimations of π, Open Math., 17 (2019), pp. 575–581. DOI:

W.-Q. Xu, S. Wang, D. Xu, Nonlinear extrapolation estimates of π, Acta Math. Sin. Appl. Engl. Ser., to appear.




How to Cite

Wang, S., Li, Z., & Xu, W.-Q. (2023). Nonlinear random extrapolation estimates of \(\pi\) under Dirichlet distributions. J. Numer. Anal. Approx. Theory, 52(2), 273–294.