An extension of the Cheney-Sharma operator of the first kind
DOI:
https://doi.org/10.33993/jnaat522-1373Keywords:
Cheney-Sharma operator, Stancu operator, modulus of smoothness, Lipschitz functionAbstract
We extend the Cheney-Sharma operators of the first kind using Stancu type technique and we study some approximation properties of the new operator. We calculate the moments, we study local approximation with respect to a K-functional and the preservation of the Lipschitz constant and order.
Downloads
References
O. Agratini, Approximation by linear operators, Cluj University Press, 2000.
G. Bascanbaz-Tunca, A. Erencin, F. Tasdelen, Some properties of Bernstein type Cheney and Sharma Operators, General Mathematics, 24 (2016), pp. 17-25.
E.W. Cheney, A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 2 (1964), pp. 77-84.
T. Bostanci, G. Bascanbaz-Tunca, A Stancu type extension of Cheney and Sharma operator, J. Numer. Anal. Approx. Theory, 47 (2018), pp. 124-134, https://doi.org/10.33993/jnaat472-1133. DOI: https://doi.org/10.33993/jnaat472-1133
D.D. Stancu, C. Cismasiu, On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numer. Theor. Approx., 26 (1997), pp. 221-227.
D.D. Stancu, Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM 57 (1982), pp. 241-251, https://doi.org/10.1007/978-3-0348-6308-7_23. DOI: https://doi.org/10.1007/978-3-0348-6308-7_23
D.D. Stancu, G. Coman, O. Agratini, R.T. Trımbitas, , P. Blaga, I. Chiorean, Analiza numerica și teoria aproximarii, Presa Universitara Clujeana, 2001 (in Romanian)
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Teodora Catinas, Iulia Buda
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.