Convergence of \(\lambda\)-Bernstein - Kantorovich operators in the \(L_p\)- norm
DOI:
https://doi.org/10.33993/jnaat531-1374Abstract
We show the convergence of \(\lambda\)-Bernstein - Kantorovich operators defined by Acu et al. [J. Ineq. Appl. 2018], for functions in \(L_p[0,1],\, p\geq 1\). We also determine the convergence rate via integral modulus of smoothness.
Downloads
References
A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of λ-Kantorovich operators, J. Inequal. Appl. 202 (2018). DOI: https://doi.org/10.1186/s13660-018-1795-7
P. N. Agrawal, B. Baxhaku and R. Shukla, A new kind of bi-variate λ-Bernstein-Kantorovich type operator with shifted knots and its associated GBS form, Math. Found. Comput. 5, no.3 (2022), pp.157-172. DOI: https://doi.org/10.3934/mfc.2021025
R. Aslan, Approximation properties of univariate and bivariate new class λ-Bernstein–Kantorovich operators and its associated GBS operators, Comput. Appl. Math. 42, art. no. 34 (2023). https://doi.org/10.1007/s40314-022-02182-w DOI: https://doi.org/10.1007/s40314-022-02182-w
S. N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilites, Commun. Soc. Math. Kharkow 2, no. 13 (1912), pp. 1-2.
M. Bodur, N. Manav and F. Tas ̧delen, Approximation properties of λ-Bernstein-Kantorovich-Stancu operators, Math. Slovaca 72, no.1 (2022), pp 141-152. https://doi.org/10.1515/ms-2022-0010 DOI: https://doi.org/10.1515/ms-2022-0010
Q. B. Cai, B. Y. Lian and G. Zhou, Approximation properties of λ-Bernstein operators, J. Inequal. Appl. 61 (2018). DOI: https://doi.org/10.1186/s13660-018-1653-7
R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin Heidelberg New York, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9
Z. Ditzian and K. Ivanov, Bernstein-type operators and their derivatives, J. Approx. Theory 56, no.1 (1989), pp. 72-90. https://doi.org/10.1016/0021-9045(89)90134-2 DOI: https://doi.org/10.1016/0021-9045(89)90134-2
S. Guo, C. Li, X. Liu and Z. Song, Pointwise approximation for linear combinations of Bernstein operators, J. Approx. Theory 107, no. 1 (2000), pp. 109-120. DOI: https://doi.org/10.1006/jath.2000.3504
A. Kumar, Approximation properties of generalized λ-Bernstein-Kantorovich type operators, Rend. Circ. Mat. Palermo, II. Ser, 70, 2021, pp.505-520. https://doi.org/10.1007/s12215-020-00509-2 DOI: https://doi.org/10.1007/s12215-020-00509-2
M. Mursaleen, K. J. Ansari and A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput. 266 (2015), pp.874-882. DOI: https://doi.org/10.1016/j.amc.2015.04.090
G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl. 350 (2009), pp.50–55. https://doi.org/10.1016/j.jmaa.2008.09.003 DOI: https://doi.org/10.1016/j.jmaa.2008.09.003
M. A. Ozarslan and O. Duman, Smoothness properties of modified Bernstein - Kantorovich operators, Numer. Funct. Anal. Optim. 37, no.1 (2016), pp.92-105. https://doi.org/10.1080/01630563.2015.1079219 DOI: https://doi.org/10.1080/01630563.2015.1079219
S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of λ-Bernstein-Kantorovich operators with shifted knots, Math. Methods. Appl. Sci. 42 (2019), pp.4042-4053. https://doi.org/10.1002/mma.5632 DOI: https://doi.org/10.1002/mma.5632
S. Sucu and E. Ibikli, Approximation by means of Kantorovich-Stancu type operators, Numer. Funct. Anal. Optim. 34, no.5 (2013), pp. 557-575. https://doi.org/10.1080/01630563.2012.716806 DOI: https://doi.org/10.1080/01630563.2012.716806
Z. Ye, X. Long and X. M. Zeng, Adjustment algorithms for Bezier curve and surface, In: International Conference on Computer Science and Education (2010), pp. 1712-1716.
X. M. Zeng and F.F. Cheng, On the rates of approximation of Bernstein type operators, J. Approx. Theory 109, no.2 (2001), pp.242-256. https://doi.org/10.1006/jath.2000.3538 DOI: https://doi.org/10.1006/jath.2000.3538
A. Zygmund, Trigonometric Series I, II, Cambridge University Press, Cambridge, U.K., 1959.
Published
Issue
Section
License
Copyright (c) 2024 Purshottam N. Agrawal, Behar Baxhaku
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.