Convergence of λ-Bernstein - Kantorovich operators in the Lp- norm

Authors

DOI:

https://doi.org/10.33993/jnaat531-1374
Abstract views: 189

Abstract

We show the convergence of λ-Bernstein - Kantorovich operators defined by Acu et al. [J. Ineq. Appl. 2018], for functions in Lp[0,1],p1. We also determine the convergence rate via integral modulus of smoothness.

Downloads

References

A. M. Acu, N. Manav and D. F. Sofonea, Approximation properties of λ-Kantorovich operators, J. Inequal. Appl. 202 (2018). DOI: https://doi.org/10.1186/s13660-018-1795-7

P. N. Agrawal, B. Baxhaku and R. Shukla, A new kind of bi-variate λ-Bernstein-Kantorovich type operator with shifted knots and its associated GBS form, Math. Found. Comput. 5, no.3 (2022), pp.157-172. DOI: https://doi.org/10.3934/mfc.2021025

R. Aslan, Approximation properties of univariate and bivariate new class λ-Bernstein–Kantorovich operators and its associated GBS operators, Comput. Appl. Math. 42, art. no. 34 (2023). https://doi.org/10.1007/s40314-022-02182-w DOI: https://doi.org/10.1007/s40314-022-02182-w

S. N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilites, Commun. Soc. Math. Kharkow 2, no. 13 (1912), pp. 1-2.

M. Bodur, N. Manav and F. Tas ̧delen, Approximation properties of λ-Bernstein-Kantorovich-Stancu operators, Math. Slovaca 72, no.1 (2022), pp 141-152. https://doi.org/10.1515/ms-2022-0010 DOI: https://doi.org/10.1515/ms-2022-0010

Q. B. Cai, B. Y. Lian and G. Zhou, Approximation properties of λ-Bernstein operators, J. Inequal. Appl. 61 (2018). DOI: https://doi.org/10.1186/s13660-018-1653-7

R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin Heidelberg New York, 1993. DOI: https://doi.org/10.1007/978-3-662-02888-9

Z. Ditzian and K. Ivanov, Bernstein-type operators and their derivatives, J. Approx. Theory 56, no.1 (1989), pp. 72-90. https://doi.org/10.1016/0021-9045(89)90134-2 DOI: https://doi.org/10.1016/0021-9045(89)90134-2

S. Guo, C. Li, X. Liu and Z. Song, Pointwise approximation for linear combinations of Bernstein operators, J. Approx. Theory 107, no. 1 (2000), pp. 109-120. DOI: https://doi.org/10.1006/jath.2000.3504

A. Kumar, Approximation properties of generalized λ-Bernstein-Kantorovich type operators, Rend. Circ. Mat. Palermo, II. Ser, 70, 2021, pp.505-520. https://doi.org/10.1007/s12215-020-00509-2 DOI: https://doi.org/10.1007/s12215-020-00509-2

M. Mursaleen, K. J. Ansari and A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput. 266 (2015), pp.874-882. DOI: https://doi.org/10.1016/j.amc.2015.04.090

G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl. 350 (2009), pp.50–55. https://doi.org/10.1016/j.jmaa.2008.09.003 DOI: https://doi.org/10.1016/j.jmaa.2008.09.003

M. A. Ozarslan and O. Duman, Smoothness properties of modified Bernstein - Kantorovich operators, Numer. Funct. Anal. Optim. 37, no.1 (2016), pp.92-105. https://doi.org/10.1080/01630563.2015.1079219 DOI: https://doi.org/10.1080/01630563.2015.1079219

S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of λ-Bernstein-Kantorovich operators with shifted knots, Math. Methods. Appl. Sci. 42 (2019), pp.4042-4053. https://doi.org/10.1002/mma.5632 DOI: https://doi.org/10.1002/mma.5632

S. Sucu and E. Ibikli, Approximation by means of Kantorovich-Stancu type operators, Numer. Funct. Anal. Optim. 34, no.5 (2013), pp. 557-575. https://doi.org/10.1080/01630563.2012.716806 DOI: https://doi.org/10.1080/01630563.2012.716806

Z. Ye, X. Long and X. M. Zeng, Adjustment algorithms for Bezier curve and surface, In: International Conference on Computer Science and Education (2010), pp. 1712-1716.

X. M. Zeng and F.F. Cheng, On the rates of approximation of Bernstein type operators, J. Approx. Theory 109, no.2 (2001), pp.242-256. https://doi.org/10.1006/jath.2000.3538 DOI: https://doi.org/10.1006/jath.2000.3538

A. Zygmund, Trigonometric Series I, II, Cambridge University Press, Cambridge, U.K., 1959.

Downloads

Published

2024-07-11

Issue

Section

Articles

How to Cite

Agrawal, P. N., & Baxhaku, B. (2024). Convergence of λ-Bernstein - Kantorovich operators in the Lp- norm. J. Numer. Anal. Approx. Theory, 53(1), 18-23. https://doi.org/10.33993/jnaat531-1374