On generation and properties of triple sequence-induced frames in Hilbert spaces

Authors

  • Asif H. Jan National Institute of Technology, Srinagar, India
  • Younis A. Bhat National Institute of Technology, India
  • Tanweer Jalal National Institute of Technology, Srinagar, India
  • Neyaz Sheikhh National Institute of Technology, India

DOI:

https://doi.org/10.33993/jnaat532-1423
Abstract views: 67

Abstract

In this paper, we present the innovative idea of ”t-frames,” frames produced by triple sequences within Hilbert spaces. The paper explores various properties of these t-frames, delving into topics like frame operators, alternative dual frames, and the stability
inherent in t-frames.

Downloads

References

O. Ahmad and N. A. Sheikh, Inequalities for wavelet frames with composite dilations in L2(Rn), Rocky Mountain Journal of Mathematics, 51(2021), pp. 32-41. https://doi.org/10.1216/rmj.2021.51.31 DOI: https://doi.org/10.1216/rmj.2021.51.31

O. Ahmad, N. A. Sheikh and M. Ahmad, Frames associated with shift invariant spaces on positive half line, Acta Univ. Sapientiae. Mathematica, 13(2021)(4), pp. 23-44. https://doi.org/10.2478/ausm-2021-0002 DOI: https://doi.org/10.2478/ausm-2021-0002

Y. A. Bhat and N. A. Sheikh, Discrete linear canonical shearlet transform, International Journal of Wavelets, Multiresolution and Information Processing, 2450004, 2024. https://doi.org/10.1142/S0219691321500302 DOI: https://doi.org/10.1142/S0219691324500048

Y. A. Bhat and N. A. Sheikh, Special affine Wigner–Ville distribution in octonion domains: theory and applications, Optik, 274 (2023). https://doi.org/10.1016/j.ijleo.2023.170531 DOI: https://doi.org/10.1016/j.ijleo.2023.170531

Y. A. Bhat and N. A. Sheikh, Windowed octonionic Fourier transform, Circuits Syst. Signal Process., 42 (2023), pp. 2872–2896. https://doi.org/10.1007/s00034-022-02241-x DOI: https://doi.org/10.1007/s00034-022-02241-x

P. G. Casazza, The art of frame theory, Taiwan. J. Math., 4 (2000), pp. 129-201. https://doi.org/10.11650/twjm/1500407227 DOI: https://doi.org/10.11650/twjm/1500407227

I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992. http://dx.doi.org/10.1137/1.9781611970104 DOI: https://doi.org/10.1137/1.9781611970104

I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), pp. 1271–1283. https://doi.org/10.1063/1.527388 DOI: https://doi.org/10.1063/1.527388

A. Debrouwere and B. Prangoski, Gabor frame characterizations of generalized modulation spaces, Anal. Appl., 21 (2023), pp. 547-596. https://doi.org/10.1142/S0219530522500178 DOI: https://doi.org/10.1142/S0219530522500178

R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341–366. https://10.1090/S0002-9947-1952-0047179-6 DOI: https://doi.org/10.1090/S0002-9947-1952-0047179-6

K. Grochenig, Describing functions: Atomic decompositions versus frames, Monatsh.fur Math., 112 (1991), pp. 1-41. http://eudml.org/doc/178528 DOI: https://doi.org/10.1007/BF01321715

C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Review, 31 (1989), pp. 628-666. http://dx.doi.org/10.1137/1031129 DOI: https://doi.org/10.1137/1031129

T. Jalal and I. A. Malik, I-convergent triple sequence spaces over n-normed space, Asia Pac. J. Math., 5 (2018), pp. 233-242. http://dx.doi.org/10.22199/issn.0717-6279-4867

T. Jalal and I. A. Malik, Some new triple sequence spaces over n-normed space, Proyecciones, 37 (2018), pp. 547-564. http://dx.doi.org/10.4067/S0716-09172018000300547 DOI: https://doi.org/10.4067/S0716-09172018000300547

T. Jalal and I. A. Malik, I -Convergence of triple difference sequence spaces over n normed space, Tbilisi Math. J., 11 (2018), pp. 93-102. https://doi.org/10.32513/tbilisi/1546570888 DOI: https://doi.org/10.32513/tbilisi/1546570888

A. H. Jan and T. Jalal, On lacunary ∆m-statistical convergence of triple sequence in intuitionistic fuzzy n-normed space, Korean J. Math., 31 (2023), pp. 349-361. https://doi.org/10.11568/kjm.2023.31.3.349

A. H. Jan and T. Jalal, On lacunary ∆m-statistical convergence of triple sequence in intuitionistic fuzzy normed space, Bull. Transilv. Univ. Brasov Ser. III. Math. Comput.Sci., 66 (2024), pp. 101-116. https://doi.org/10.31926/but.mif.2024.4.66.1.7 DOI: https://doi.org/10.31926/but.mif.2024.4.66.1.7

R. Lu, A structural characterization of compactly supported OEP-based balanced dual multiframelets, Anal. Appl., 21 (2023), pp. 1039-1066. https://doi.org/10.1142/S0219530523500069 DOI: https://doi.org/10.1142/S0219530523500069

A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Anal. Math., 53 (1900), pp. 289-321. https://doi.org/10.1007/BF01448977 DOI: https://doi.org/10.1007/BF01448977

A. Sahiner, M. Gurdal and F. K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8 (2007), pp. 49-55

S. K. Sharma, A. Zothansanga, S.K. Kaushik, On approximative frames in Hilbert spaces, Palest. J. Math., 3 (2014), pp. 148-159.

Downloads

Published

2024-12-18

Issue

Section

Articles

How to Cite

Jan, A. H., Bhat, Y. A., Jalal, T., & Sheikhh, N. (2024). On generation and properties of triple sequence-induced frames in Hilbert spaces. J. Numer. Anal. Approx. Theory, 53(2), 259-278. https://doi.org/10.33993/jnaat532-1423