On generation and properties of triple sequence-induced frames in Hilbert spaces

Authors

  • Asif H. Jan National Institute of Technology, Srinagar, India
  • Younis A. Bhat National Institute of Technology, India
  • Tanweer Jalal National Institute of Technology, Srinagar, India
  • Neyaz Sheikhh National Institute of Technology, India

DOI:

https://doi.org/10.33993/jnaat532-1423
Abstract views: 0

Abstract

In this paper, we present the innovative idea of ”t-frames,” frames produced by triple sequences within Hilbert spaces. The paper explores various properties of these t-frames, delving into topics like frame operators, alternative dual frames, and the stability
inherent in t-frames.

Downloads

Download data is not yet available.

References

O. Ahmad and N. A. Sheikh, Inequalities for wavelet frames with composite dilations in L2(Rn), Rocky Mountain Journal of Mathematics, 51(2021), pp. 32-41. https://doi.org/10.1216/rmj.2021.51.31 DOI: https://doi.org/10.1216/rmj.2021.51.31

O. Ahmad, N. A. Sheikh and M. Ahmad, Frames associated with shift invariant spaces on positive half line, Acta Univ. Sapientiae. Mathematica, 13(2021)(4), pp. 23-44. https://doi.org/10.2478/ausm-2021-0002 DOI: https://doi.org/10.2478/ausm-2021-0002

Y. A. Bhat and N. A. Sheikh, Discrete linear canonical shearlet transform, International Journal of Wavelets, Multiresolution and Information Processing, 2450004, 2024. https://doi.org/10.1142/S0219691321500302 DOI: https://doi.org/10.1142/S0219691324500048

Y. A. Bhat and N. A. Sheikh, Special affine Wigner–Ville distribution in octonion domains: theory and applications, Optik, 274 (2023). https://doi.org/10.1016/j.ijleo.2023.170531 DOI: https://doi.org/10.1016/j.ijleo.2023.170531

Y. A. Bhat and N. A. Sheikh, Windowed octonionic Fourier transform, Circuits Syst. Signal Process., 42 (2023), pp. 2872–2896. https://doi.org/10.1007/s00034-022-02241-x DOI: https://doi.org/10.1007/s00034-022-02241-x

P. G. Casazza, The art of frame theory, Taiwan. J. Math., 4 (2000), pp. 129-201. https://doi.org/10.11650/twjm/1500407227 DOI: https://doi.org/10.11650/twjm/1500407227

I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992. http://dx.doi.org/10.1137/1.9781611970104 DOI: https://doi.org/10.1137/1.9781611970104

I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), pp. 1271–1283. https://doi.org/10.1063/1.527388 DOI: https://doi.org/10.1063/1.527388

A. Debrouwere and B. Prangoski, Gabor frame characterizations of generalized modulation spaces, Anal. Appl., 21 (2023), pp. 547-596. https://doi.org/10.1142/S0219530522500178 DOI: https://doi.org/10.1142/S0219530522500178

R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341–366. https://10.1090/S0002-9947-1952-0047179-6 DOI: https://doi.org/10.1090/S0002-9947-1952-0047179-6

K. Grochenig, Describing functions: Atomic decompositions versus frames, Monatsh.fur Math., 112 (1991), pp. 1-41. http://eudml.org/doc/178528 DOI: https://doi.org/10.1007/BF01321715

C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Review, 31 (1989), pp. 628-666. http://dx.doi.org/10.1137/1031129 DOI: https://doi.org/10.1137/1031129

T. Jalal and I. A. Malik, I-convergent triple sequence spaces over n-normed space, Asia Pac. J. Math., 5 (2018), pp. 233-242. http://dx.doi.org/10.22199/issn.0717-6279-4867

T. Jalal and I. A. Malik, Some new triple sequence spaces over n-normed space, Proyecciones, 37 (2018), pp. 547-564. http://dx.doi.org/10.4067/S0716-09172018000300547 DOI: https://doi.org/10.4067/S0716-09172018000300547

T. Jalal and I. A. Malik, I -Convergence of triple difference sequence spaces over n normed space, Tbilisi Math. J., 11 (2018), pp. 93-102. https://doi.org/10.32513/tbilisi/1546570888 DOI: https://doi.org/10.32513/tbilisi/1546570888

A. H. Jan and T. Jalal, On lacunary ∆m-statistical convergence of triple sequence in intuitionistic fuzzy n-normed space, Korean J. Math., 31 (2023), pp. 349-361. https://doi.org/10.11568/kjm.2023.31.3.349

A. H. Jan and T. Jalal, On lacunary ∆m-statistical convergence of triple sequence in intuitionistic fuzzy normed space, Bull. Transilv. Univ. Brasov Ser. III. Math. Comput.Sci., 66 (2024), pp. 101-116. https://doi.org/10.31926/but.mif.2024.4.66.1.7 DOI: https://doi.org/10.31926/but.mif.2024.4.66.1.7

R. Lu, A structural characterization of compactly supported OEP-based balanced dual multiframelets, Anal. Appl., 21 (2023), pp. 1039-1066. https://doi.org/10.1142/S0219530523500069 DOI: https://doi.org/10.1142/S0219530523500069

A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Anal. Math., 53 (1900), pp. 289-321. https://doi.org/10.1007/BF01448977 DOI: https://doi.org/10.1007/BF01448977

A. Sahiner, M. Gurdal and F. K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8 (2007), pp. 49-55

S. K. Sharma, A. Zothansanga, S.K. Kaushik, On approximative frames in Hilbert spaces, Palest. J. Math., 3 (2014), pp. 148-159.

Downloads

Published

2024-12-18

How to Cite

Jan, A. H., Bhat, Y. A., Jalal, T., & Sheikhh, N. (2024). On generation and properties of triple sequence-induced frames in Hilbert spaces. J. Numer. Anal. Approx. Theory, 53(2), 259–278. https://doi.org/10.33993/jnaat532-1423

Issue

Section

Articles