Upper and lower solution method for control of second-order Kolmogorov type systems

Authors

  • Alexandru Hofman Faculty of Mathematics and Computer Science, Babeș-Bolyai University, Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat541-1515

Keywords:

Kolmogorov system, control problem, approximation algorithm
Abstract views: 207

Abstract

In this paper, an upper and lower solution method for the control of second-order Kolmogorov systems is introduced. Two iterative algorithms, one exact and one approximate, are proposed and their convergence is studied. The technique is based on Perov's fixed point theorem, matrices convergent to zero, and the use of Bielecki's norm.

Downloads

Download data is not yet available.

References

J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, Vol. 136, Amer. Math. Soc., Providence, 2007.

A. Hofman and R. Precup, Vector fixed point approach to control of Kolmogorov diferential systems, Commun.Contemp. Math., 5 (2024) 1968-1981. DOI: https://doi.org/10.37256/cm.5220242840

A. Hofman and R. Precup, Control problems for Kolmogorov type second order equations and systems, submitted.

A. N. Kolmogorov, Sulla teoria di Volterra della lotta per l'esistenza, Giornale dell Istituto Italiano degli Attuari 7 (1936) 74-80.

J. D. Murray, An Introduction to Mathematical Biology, Vol. 1, Springer, New York, 2011.

L. G. Parajdi, R. Precup and I. S. Haplea, A method of lower and upper solutions for control problems and application to a model of bone marrow transplantion, Inter. J. Appl. Math. Comput. Sci. 33(3) (2023) 409-418. DOI: https://doi.org/10.34768/amcs-2023-0029

R. Precup, On some applications of the controllability principle for fixed point equations, Results Appl. Math. 13 (2022) 100236. DOI: https://doi.org/10.1016/j.rinam.2021.100236

R. Precup, Methods in Nonlinear Integral Equations, Springer, 2002. DOI: https://doi.org/10.1007/978-94-015-9986-3

Downloads

Published

2025-06-30

Issue

Section

Articles

How to Cite

Hofman, A. (2025). Upper and lower solution method for control of second-order Kolmogorov type systems. J. Numer. Anal. Approx. Theory, 54(1), 100-110. https://doi.org/10.33993/jnaat541-1515