Return to Article Details Products of parametric extensions: refined estimates

Products of parametric extensions: refined estimates

Heiner H. Gonska
Abstract: We present point wise estimates on approximation by bounded linear operators of real-valued continuous functions defined on the cartesian product of \(d\) compact intervals. The main purpose is to provide a unified theory to deal with pointwise estimates on approximation processes of the above type which are generated by the tensor product method. This will constitute an extension and a refinement of earlier work of Haussmann and Pottinger. As an example a new estimate for approximation by multivariate positive linear operators is given.

2005 Mathematics Subject Classification: 41A65, 47A58.

Keywords: positive linear operators, tensor product, multivariate linear operators.

February 06, 2025; accepted: June 26, 2025; published online: June 30, 2025.

Republished from H. Gonska, Products of parametric extensions: refined estimates, in: Proc. 2nd Int. Conf. on "Symmetry and Antisymmetry" in Mathematics, Formal Languages and Computer Science (hrsg. v. G.V. Orman und D. Bocu), pp. 1-15, Editura Universitatii "Transilvania", Brasov, Romania, 2000.

1 Introduction

In the present paper we deal with pointwise estimates on approximation by bounded linear operators of real-valued continuous functions defined on the cartesian product of \(d\) compact intervals \(I_{\delta }\). This space will be denoted by \(C\big( \times _{\delta =1}^{d}I_{\delta }\big) \). The main purpose is to provide a unified theory to deal with pointwise estimates on approximation processes of the above type which are generated by the tensor product method. Thus it constitutes an extension and a refinement of papers of W. Haussmann and P. Pottinger [ 3 ] , [ 4 ] , [ 5 ] who treated the case of uniform estimates. Since all function to be approximated are defined on a rectangular domain in \(d\) dimensions, it is possible to take full advantage of refined estimates for the univariate case, many of which were obtained only recently. This is exemplified for the case of positive operators.

While 2 will deal with the case of products of arbitrary bounded linear operators, several more instructive pointwise inequalities on tensor product of positive linear operators will be given in 3.

See for instance W. Haussmann and P. Pottinger [ 5 ] for references concerning among other things existence and uniqueness theorems or non-quantitative assertions on convergence. Throughout the paper we write \(I_{\delta }=\left[ a_{\delta },b_{\delta }\right] ,1\leq \delta \leq d\in N\), where \(\left[ a_{\delta },b_{\delta }\right] \) are compact intevals with non-empty interior. The space of continuous functions on such an interval will be \(C\left( I_{\delta }\right) \). The definition of some further notation used in this paper may be found in Haussmann’s and Pottinger’s article.

2 Estimates on approximation by bounded linear operators

The following is a modification of a result due to W. Haussmann and P. Pottinger [ 5 , Proposition 1 ] .

Theorem 1

Let \(d\in N\). Let \(I_{\delta }\) be a non-trivial compact interval, \(1\leq \delta \leq d\), and \(\delta _{0}\in \{ 1,\ldots d\} \) be fixed. If \(\mu :C(I_{\delta _{0}})\rightarrow R\) is a continous linear functional, then for each \(h\in C\left( \times _{\delta =1}^{d}I_{\delta }\right) \) we have

\begin{align*} & \left\Vert (id^{1}\widehat{\otimes }\ldots \widehat{\otimes }\ id^{\delta _{0}-1}\widehat{\otimes }\mu \widehat{\otimes }id^{\delta _{0}+1}\widehat{\otimes }\ldots \widehat{\otimes }id^{d})\left( h\right) \right\Vert _{\varepsilon }=\\ & =\sup \Big\{ \Big\vert \mu \big( h_{\delta _{0}}{\big( x_{1,\ldots ,x_{\delta _{0}-1,}x_{\delta _{0+1,}\ldots ,x_{d}}}\big) }\big) \Big\vert :x_{\delta }\in I_{\delta },1\leq \delta \leq d,\delta \neq \delta _{0}\Big\} . \end{align*}

Here for \(1\leq \delta \leq d\) the symbol \(id^{\delta }\) denotes the identity of \(C\left( I_{\delta }\right) \),

\[ id^{1}\widehat{\otimes }\ldots \widehat{\otimes }id^{\delta _{0}-1}\widehat{\otimes }\mu \widehat{\otimes }id^{\delta _{0}+1}\widehat{\otimes }\ldots \widehat{\otimes }id^{d} \]

is the extension of

\[ id^{1}\otimes \ldots \otimes id^{\delta _{0}-1}\otimes \mu \otimes \times id^{\delta _{0}+1}\otimes \ldots \otimes id^{d}:\otimes _{1\leq \delta \leq d}^{\varepsilon }C\left( I_{\delta }\right) \rightarrow \otimes _{\delta =1,\delta \neq \delta _{0}}^{d}C\left( I_{\delta }\right) \]

to the space \(\widehat{\otimes }_{1\leq \delta \leq d}^{\varepsilon }C(I_{\delta })\), and \(h_{\delta _{0}}^{\big( x_{1,\ldots ,x_{\delta _{0}-1},x_{\delta _{0}-1},\ldots ,x_{d}}\big) \text{ }}\)is the \(\delta _{0}\)-th partial mapping of \(h\) belonging to the fixed points \(x_{1},\ldots ,x_{\delta _{0}-1},x\delta _{0}\ldots ,x_{d}\), which is defined by

\[ I_{\delta _{0}}\ni x\mapsto h(x_{1},\ldots ,x_{\delta _{0}-1},x,x_{\delta _{0}+1},\ldots ,x_{d})\in R. \]

Proof
As usual, we consider the linear hull \(\Big\langle \prod \limits _{\delta =1}^{d}C\left( I_{\delta }\right)\Big\rangle \) of the complex product \(\prod \limits _{\delta =1}^{d}C\left( I_{\delta }\right) \) as a realization of the tensor product \(\otimes _{\delta =1}^{d}C\left( I_{\delta }\right) \). Let \(g\in \Big\langle \prod \limits _{\delta =1}^{d}C\left( I_{\delta }\right)\Big\rangle \). Then \(g=\sum _{i=1}^{n}g_{i,1\cdots g_{i,d}}\) with \(\ g_{i,\delta }\in C\left( I_{\delta }\right) \) and
\begin{align*} & \left( id^{1}\otimes \ldots \otimes id^{\delta _{0}-1}\otimes \mu \otimes id^{\delta _{0}+1}\otimes \ldots \otimes id^{d}\right) \left( g\right) =\\ & =\Big(id^{1}\otimes \ldots \otimes id^{\delta _{0}-1}\otimes \mu \otimes id^{\delta _{0}+1}\otimes \ldots \otimes id^{d}\Big)\left( \sum _{i=1}^{n}g_{i,1}\cdots g_{i,d}\right) \\ & =\sum _{i=1}^{n}id^{1}\left( g_{i,1}\right) \otimes \ldots \otimes \mu \left( g_{i,\delta _{0}}\right) \otimes \ldots \otimes id^{d}\left( g_{i,d}\right)\\ & \quad \in (\otimes _{i\leq \delta \leq \delta _{0}-1}C\left( I_{\delta }\right) )\otimes R\otimes \left( \otimes _{\delta _{0}+1\leq \delta \leq d}C\left( I_{\delta }\right) \right) . \end{align*}

Proof

If as a realization for the last product we also choose the linear hulls of the corresponding complex product, this yields

\[ \left( id^{1}\otimes \ldots \otimes id^{\delta _{0}-1}\otimes \mu \otimes id^{\delta _{0}+1}\otimes \ldots \otimes id^{d}\right) \left( g\right) =\sum _{i=1}^{n}\mu \left( g_{1,\delta _{0}}\right) \cdot \prod \limits _{\delta =1,\delta \neq \delta _{0}}^{d}g_{1,d}, \]

If we equip \(\otimes _{\delta =1}^{d}C\left( I_{\delta }\right) \) with the \(\varepsilon \)-norm, that is, if for \(g\in \otimes _{\delta =1}^{d}C\left( I_{\delta }\right) \), \(g=\sum _{i=1}^{n}g_{i,1}\cdot \ldots \cdot g_{i,d}\)

\[ \varepsilon \left( g\right) =\sup \limits _{\phi _{\substack {1\in \left[ C\left( I_{1}\right) \right] ^{\prime }\\ \left\Vert \phi _{1}\right\Vert \leq 1}}}\ldots \sup _{\substack {\phi _{d}\in \left[ C\left( I_{d}\right) \right] ^{\prime }\\ \left\Vert \phi _{d}\right\Vert \leq 1}}\left\vert \sum _{i=1}^{n}\prod \limits _{\delta =1}^{d}\phi _{\delta }\left( g_{1,\delta }\right) \right\vert , \]

and if we do the same in \(\big(\otimes _{1\leq \delta \leq \delta _{0}-1}C\left( I_{\delta }\right)\big)\otimes R\otimes \big(\otimes _{\delta _{0}+|\leq \delta \leq d}C\left( I_{\delta }\right) \big) \), then \(\left( \varepsilon ,\varepsilon \right) \) are uniform crossnorms with respect to the pair
\(\Big\{ \otimes _{\delta =1}^{d}C\left(I_{\delta }\right),\big( \otimes _{1\leq \delta \leq \delta _{0}-1}C\left( I_{\delta }\right)\big) \otimes R\otimes \big( \otimes _{\delta _{0}+1\leq \delta \leq d}C\left( I_{\delta }\right) \big) \Big\} \) see W. Haussmann and P. Pottinger [ 5 , Theorem 2 ] . Thus the tensor product operator

\begin{align*} & id^{1}\otimes \ldots \otimes id^{\delta _{0}-1}\otimes \mu \otimes id^{\delta _{0}+1}\otimes \ldots \otimes id^{d}: \otimes id_{\delta =1}^{d}C\left( I_{\delta }\right) \\ & \rightarrow \Big( \otimes _{1\leq \delta \leq \delta _{0}-1}C\left( I_{\delta }\right) \Big) \otimes R\otimes \Big( \otimes _{\delta _{0}+1\leq \delta \leq d}C\left( I_{\delta }\right) \Big) \end{align*}

is continuous.

We now consider the \(\delta _{0}\)-th partial mappings \(f_{\delta _{0}}^{\bar{\xi }}\) belonging to \(f,\delta _{0}\) and the fixed \(\left( d-1\right) \) tuples \(\bar{\xi }:=\left( x_{1},\ldots ,x_{\delta _{0}-1},x_{\delta _{0}+1},\ldots ,x_{d}\right). \) The mapping \(f_{\mu }L:\times _{\delta =1,\delta \neq \delta _{0}}^{d}I_{\delta }\rightarrow R\) (where \(\mu \) is the linear functional from above), given by \(F_{\mu }\big( \bar{\xi }\big) :=\mu \big( f_{\delta _{0}}^{\bar{\xi }}\big) \) is continuous, since for \(\bar{\xi }:=\left( x_{1},\ldots ,x_{\delta _{0}-1},x_{\delta _{0}+1},\ldots ,x_{d}\right) \) and \(\widehat{\bar{\xi }}~ =\hat{x}_{1},\ldots ,\hat{x}_{\delta _{0}-1},\hat{x}_{\delta _{0}+1},\ldots ,\hat{x}_{d})\in \times _{\delta =1,\delta \neq \delta _{0}}^{d}I_{\delta }\), one has

\begin{align*} \left\vert f_{\mu }\left( \bar{\xi }\right) -f_{\mu }\left( \widehat{\bar{\xi }}\right) \right\vert & =\left\vert \mu \left( f_{\delta _{0}}^{\bar{\xi }}\right) -\mu \left( f_{\delta _{0}}^{\widehat{\bar{\xi }}}\right) \right\vert \\ & \leq \left\Vert \mu \right\Vert \cdot \left\Vert f_{\delta _{0}}^{\bar{\xi }}-f_{\delta _{0}}^{\widehat{\bar{\xi }}}\right\Vert \big( I_{\delta }\big) \ \ \ \text{(max norm on }I_{\delta _{0}}\text{)}\\ & \quad -\left\Vert \mu \right\Vert \cdot \sup \Big\{ \Big|f\left( x_{1},\ldots ,x_{\delta _{0}-1},x,x_{\delta _{0}+1},\ldots ,x_{d}\right) -\Big. \\ & \quad - \left. f\left( \hat{x}_{1},\ldots ,\hat{x}_{\delta _{0}-1},x,\hat{x}_{\delta _{0}+1},\ldots ,\hat{x}_{d}\right)\Big|:x\in I_{\delta _{0}}\right\} , \end{align*}

where \(\left\Vert \mu \right\Vert \) denotes the norm of \(\mu \) with respect to \(\Big( \left( C\left( I_{\delta }\right) ,\left\Vert \cdot \right\Vert _{\infty }\right) ,R\left\vert \cdot \right\vert \Big)\). This and the uniform continuity of \(f\) imply the continuity of \(f_{\mu }\).

We now define

\[ H_{\mu }:C\left( \times _{\delta =1}^{d}I_{\delta }\right) \ni f\longmapsto f_{\mu }\in C\left( \times _{\delta =1,\delta \neq \delta _{0}}^{d}I_{\delta }\right) . \]

The fact that \(H_{\mu }\) is continuous is a consequence of the following chain of (in)equalities showing that the operator norm \(\Vert H_{\mu }\Vert \) is bounded:

\begin{align*} \Vert H_{\mu }\Vert & =\sup \Big\{ \Vert H_{\mu }(f)\Vert _{\infty }:\Vert f\Vert _{\infty }\leq 1\Big\} \\ & =\sup \Big\{ \Vert f_{\mu }\Vert _{\infty }:\Vert f\Vert _{\infty }\leq 1\Big\} \\ & =\sup \left\{ \sup \left\{ \left\vert \mu \left( f_{\delta _{0}}^{\bar{\xi }}\right) \right\vert :\bar{\xi }\in \times _{\delta =1,\delta \neq \delta _{0}}^{d}I_{\delta }\right\} :\Vert f\Vert _{\infty }\leq 1\right\} \\ & \leq \sup \left\{ \sup \left\{ \left\Vert \mu \right\Vert \cdot \left\Vert f_{\delta _{0}}^{\bar{\xi }}\right\Vert _{\infty }:\bar{\xi }\in \times _{\delta =1,\delta \neq \delta _{0}}^{d}I_{\delta }\right\} :\Vert f\Vert _{\infty }\leq 1\right\} \\ & \leq \sup \Big\{ \Vert \mu \Vert \cdot \Vert f\Vert _{\infty }:\left\Vert f\right\Vert _{\infty }\leq 1\Big\} \\ & =\Vert \mu \Vert {\lt}\infty . \end{align*}

If \(g\in \Big\langle \prod \limits _{\delta =1}^{d}C(I_{\delta })\Big\rangle \), \(g=\sum \limits _{i=1}^{n}g_{i,1\cdot \dots \cdot g_{i,d}}\) for some \(n\in \mathbb {N}\), then

\begin{align*} H_{\mu }(g) & =H_{\mu }\left( \sum _{i=1}^{n}g_{i,1\cdot \dots \cdot g_{i,d}}\right) =\sum _{i=1}^{n}H_{\mu }(g_{i,1\cdot \dots \cdot g_{i,d}})\\ & =\sum _{i=1}^{n}\left( g_{i,1,\dots \cdot g_{i,d}}\right) _{\mu } =\sum _{i=1}^{n}g_{i,1\cdot \dots \cdot g_{i,\delta _{0}-1}}\cdot \mu (g_{i,\delta _{0}})\cdot g_{i,\delta _{0}+1}\cdot \ldots \cdot g_{i,d}\\ & =\sum _{i=1}^{n}\mu \left( g_{i,\delta _{0}}\right) \cdot \prod \limits _{\delta =1,\delta \neq \delta _{0}}^{d}g_{i,\delta }. \end{align*}

Hence the mappings \(H_{\mu }\) and \(\big(id^{1}\otimes \dots \otimes id^{\delta _{0}-1}\otimes \mu \otimes id^{\delta _{0}+1}\otimes \dots \otimes id^{d}\big)\) coincide on \(\otimes _{\delta =1}^{d}C(I_{\delta })=\Big\langle \prod \limits _{\delta =1}^{d}C(I_{\delta })\Big\rangle \). Since the Chebyshev norm \(\Vert \cdot \Vert _{\infty }\) on \(\otimes _{\delta =1,\delta \neq \delta _{0}}^{d}C(I_{\delta })\) induces the \(\varepsilon \)-norm, both norms also coincide on the completion \(\widehat{\otimes }_{1\leq \delta \leq d,\delta \neq \delta _{0}}^{\varepsilon }C(I_{\delta })\), which is thus isometrically isomorphic to \(C\big(\times _{\delta =1,\delta \neq \delta _{0}}^{d}I_{\delta }\big)\). From this and from the continuity of both mappings considered above, it follows for each \(h\in C(\times _{\delta =1}^{d}I_{\delta })\) that

\[ \Big\Vert \Big( id^{1}\widehat{\otimes }\dots \widehat{\otimes }id^{\delta _{0}-1}\widehat{\otimes }\mu \widehat{\otimes }id^{\delta _{0}+1}\widehat{\otimes }\dots \widehat{\otimes }id^{d}\Big) (h)\Big\Vert _{\varepsilon }=\big\Vert H_{\mu }(h)\big\Vert _{\infty }. \]

Here \(\Vert \cdot \Vert _{\varepsilon }\) is the \(\varepsilon \)-norm on \(\widehat{\otimes }_{1\leq \delta \leq d,\delta \neq \delta _{0}}^{\varepsilon }C(I_{\delta })\), and \(\Vert \cdot \Vert _{\infty }\) denotes the Chebyshev norm on \(C(\times _{\delta =1,\delta \neq \delta _{0}}^{d}I_{\delta })\). Furthermore,

\begin{align*} \Vert H_{\mu }(h)\Vert _{\infty } & =\Vert h_{\mu }\Vert _{\infty }\newline = \sup \left\{ \left\vert \mu \big( h_{\delta _{0}}^{\bar{\xi }}\big) \right\vert :\bar{\xi }\in \times _{\delta =1,\delta \neq \delta _{0}}^{d}I_{\delta }\right\} \newline \\ & =\sup \bigg\{ \bigg\vert \mu \Big( h_{\delta _{0}}^{( x_{1},\dots ,x_{\delta _{0}-1},x_{\delta _{0}+1},\dots ,x_{d}) }\Big) \bigg\vert :x_{\delta }\in I_{\delta },\delta \neq \delta _{0}\bigg\} . \end{align*}

Lemma 2

For \(1\leq \delta \leq d\), let \((X_{\delta },\Vert \cdot \Vert _{\delta })\) be normed vector spaces. If \(\mu _{\delta }:X_{\delta }\rightarrow \mathbb {R}\) are continuous linear functionals, and if \(A_{\delta }:X_{\delta }\rightarrow X_{\delta }\) are continuous linear mappings, then on the space \(\widehat{\otimes }_{^{\varepsilon }1\leq \delta \leq d}X_{\delta }\), the equality

\begin{equation*} \widehat{\otimes }_{\varepsilon ,1\leq \delta \leq d}(\mu _{\delta }\circ A_{\delta })=\big(\widehat{\otimes }_{1\leq \delta \leq d}\mu _{\delta }\big)\circ \big(\widehat{\otimes }_{1\leq \delta \leq d}A_{\delta }\big) \end{equation*}

holds.

Proof
Let \(h\in \otimes _{\delta =1}^{d}X_{\delta }\). Then \(h=\sum \limits _{i=1}^{n}x_{i,1}\otimes \dots \otimes x_{i,d}\), where \(n\in \mathbb {N}\) and \(x_{i,\delta }\in X_{\delta }\). Thus
\begin{align*} (\otimes _{\delta =1}^{d}\mu _{\delta })\Big( (A_{1\varepsilon \otimes \ldots \otimes A_{d}})(h)\Big) & =\otimes _{\delta =1}^{d}\mu _{\delta }\left( \sum _{i=1}^{n}A_{1}(x_{i,1})\otimes \dots \otimes A_{d}(x_{i,d})\right)\\ & =\sum _{i=1}^{n}\mu _{1}\Big(A_{1}(x_{i,1})\Big)\otimes \dots \otimes \mu _{d}\big(A_{d}(x_{i,d})\big)\newline \\ & =\sum _{i=1}^{n}(\mu _{1}\circ A_{1})(x_{i,1})\otimes \dots \otimes (\mu _{d}\circ A_{d})(x_{i,d})\newline \\ & =\sum _{i=1}^{n}\Big[ (\mu _{1}\circ A_{1})\otimes \dots \otimes (\mu _{d}\circ A_{d})\Big] (x_{i,1}\otimes \dots \otimes x_{i,d})\newline \\ & =\otimes _{\delta =1}^{d}(\mu _{\delta }\circ A_{\delta })\left( \sum _{i=1}^{n}x_{i,1}\otimes \dots \otimes x_{i,d}\right) \newline \\ & =\otimes _{\delta =1}^{d}(\mu _{\delta }\circ A_{\delta })(h). \end{align*}

Proof

Since by Haussmann’s and Pottinger’s [ 5 , Theorem 2 ] \((\varepsilon ,\varepsilon )\) are uniform cross norms with respect to the couple \((\otimes _{\delta =1}^{d}X_{\delta },\otimes _{\delta =1}^{d}\mathbb {R}=\mathbb {R})\), the mappings

\[ \otimes _{\delta =1}^{d}A_{\delta }:\otimes _{1\leq \delta \leq d}^{\varepsilon }X_{\delta }\rightarrow \otimes _{1\leq \delta \leq d}^{\varepsilon }X_{\delta } \]

and

\[ \otimes _{\delta =1}^{d}\mu _{\delta }:\otimes _{1\leq \delta \leq d}^{\varepsilon }X_{\delta }\rightarrow \otimes _{1\leq \delta \leq d}^{\varepsilon }\mathbb {R} \]

are continuous. This implies the continuity of

\[ \left[ \otimes _{\delta =1}^{d}\mu _{\delta }\right] \circ \left[ \otimes _{\delta =1}^{d}A_{\delta }\right] . \]

For the same reason we also have continuity of

\[ \otimes _{\delta =1}^{d}(\mu _{\delta }\circ A_{\delta }). \]

Together with the observation made at the beginning of the proof this also yields equality of the extensions of the two mappings considered above, i.e.,

\[ \hat{\otimes }_{\delta =1}^{d}(\mu _{_{\delta }}\circ A_{\delta })=\widehat{\left[ \otimes _{\delta =1}^{d}\mu _{\delta }\right] \circ \otimes _{\delta =1}^{d}A_{\delta }}. \]

An analogous density argument shows the validity of

\[ \widehat{\left[ \otimes _{\delta =1}^{d}\mu _{\delta }\right] \circ \left[ \otimes _{\delta =1}^{d}A_{\delta }\right] }=\left[ \widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\right] \circ \left[ \widehat{\otimes }_{\delta =1}^{d}A_{\delta }\right]. \]

From this the claim of the lemma immediately follows.

Lemma 3

For \(1\leq \delta \leq d\) let the normed vector spaces \((X_{\delta },\Vert \cdot \Vert _{\delta })\) be given and let \(\mu _{\delta }:X_{\delta }\rightarrow \mathbb {R}\) be continuous linear functionals. If \(h\in \widehat{\otimes }_{1\leq \delta \leq d}^{\varepsilon }X_{\delta }\), then for each \(\delta _{0}\in \{ 1,\dots ,d\} \) one has

\[ \left\Vert \left( \widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\right) \! (h)\! \right\Vert _{\varepsilon }\! \leq \! \Big( \! \prod _{\delta =1,\delta \neq \delta _{0}}^{d}\Vert \mu _{\delta }\Vert \! \! \! \ \Big) \! \cdot \! \left\Vert \Big(id^{1}\widehat{\otimes }\ldots \widehat{\otimes }^{\delta _{0}-1}\widehat{\otimes }\mu _{\delta _{0}}\widehat{\otimes }id^{\delta _{0}+1}\widehat{\otimes }\ldots \widehat{\otimes }id^{d}\Big)(h)\right\Vert _{\varepsilon }. \]

Proof
We write
\begin{align*} \widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }& =\widehat{\otimes }_{\delta =1}^{d}\Big(id_{R}\circ \mu _{\delta }\circ id^{\delta }\Big)=& \\ & =\Big[\Big(id_{R}\circ \mu _{1}\circ id^{1}\Big)\widehat{\otimes }\ldots \widehat{\otimes }id_{R}\widehat{\otimes }\ldots \widehat{\otimes }\Big( id_{R}\circ \mu _{d}\circ id^{d}\Big)\Big]\circ \\ & \quad \circ \left[ id^{1}\widehat{\otimes }\ldots \widehat{\otimes }\mu _{\delta _{0}}\circ id^{\delta _{0}}\widehat{\otimes }\ldots \widehat{\otimes }id^{d}\right] . \end{align*}

Proof

If \(h\in \widehat{\otimes }_{1\leq \delta \leq d}^{\varepsilon }X_{\delta }\), then

\begin{align*} \left\Vert \Big(\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\Big)(h)\right\Vert _{\varepsilon }& \leq \left\Vert \Big(id_{R}\circ \mu _{1}\circ id^{1}\Big)\widehat{\otimes }\ldots \widehat{\otimes }id_{R}\widehat{\otimes }\ldots \widehat{\otimes }\left( id_{R}\circ \mu _{d}\circ id^{d}\right) \right\Vert _{_{\varepsilon }}\\ & \quad \cdot \left\Vert (id^{1}\widehat{\otimes }\ldots \widehat{\otimes }\mu _{\delta _{0}}\circ id^{\delta _{0}}\widehat{\otimes }\ldots \widehat{\otimes }id^{d})(h)\right\Vert _{\varepsilon }. \end{align*}

The uniform cross norm property of \((\varepsilon ,\varepsilon )\) with respect to the couple

\[ \Big(X_{1}\otimes \ldots \otimes X_{\delta _{0}-1}\otimes \mathbb {R}\otimes X_{\delta _{0}+1}\otimes \ldots \otimes X_{\delta },\otimes _{\delta =1}^{d}\mathbb {R}\Big) \]

(see W. Haussmann and P. Pottinger [ 5 , Theorem 2 ] ) first implies

\begin{align*} & \left\Vert \left(\left(id_{R}\circ \mu _{1}\circ id^{1}\right)\otimes \ldots \otimes \left( id_{R}\circ \mu _{d}\circ id^{d}\right) \right) \right\Vert _{\varepsilon }=\\ & =\Big\{ \prod _{\delta =1,\delta \neq \delta _{0}}^{d}\left\Vert id_{R}\circ \mu _{\delta }\circ id^{\delta }\right\Vert \Big\} \cdot \Vert id_{R}\Vert =\prod _{\delta =1,\delta \neq \delta _{0}}^{d}\Vert \mu _{\delta }\Vert . \end{align*}

For density reasons the extension of \((id_{R}\circ \mu _{\delta 1}\circ id^{1})\otimes \ldots \otimes id_{R}\otimes \ldots \otimes id_{R}\circ \mu _{d}\circ id^{d})\) has the same norm; hence

\begin{align*} & \left\Vert \left( \widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\right) (h)\right\Vert _{\varepsilon }\leq \\ & \leq \Bigg( \prod _{\delta =1,\delta \neq \delta _{0}}^{d}\Vert \mu _{\delta }\Vert \Bigg) \cdot \left\Vert \Big(id^{1}\widehat{\otimes }\ldots \widehat{\otimes }id^{\delta _{0}-1}\widehat{\otimes }\mu _{\delta _{0}}\widehat{\otimes }id^{\delta _{0}+1}\widehat{\otimes }\ldots \widehat{\otimes }id^{d}\Big)(h)\right\Vert _{_{\varepsilon }}. \end{align*}

Since \(\delta _{0} \in \{ 1, \dots , d \} \) was arbitrarily chosen, the claim of the lemma follows.

Theorem 4

(cf. W. Haussmann and P. Pottinger [ 5 , Theorem 5 ] ) Consider the normed vector spaces \((X_{\delta },\Vert \cdot \Vert _{\delta })\), \(1\leq \delta \leq d\), and the continuous linear functionals \(\mu _{\delta }:X_{\delta }\rightarrow \mathbb {R}\). Let \(P^{\delta }:X_{\delta }\rightarrow X_{\delta }\) be continuous linear operators. Then for each \(h\in \widehat{\otimes }_{1\leq \delta \leq d}^{\varepsilon }X_{\delta }\) we have

\begin{align*} & \left\Vert \left( \widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\right) \Big(h-(\widehat{\otimes }_{\delta =1}^{d}P^{\delta })(h)\Big)\right\Vert _{\varepsilon }\leq \min _{\sigma \in S_{d}} \\ & \leq \Bigg\{ \sum _{\nu =1}^{d}\Bigg\{ \sum _{\delta =1}^{d-\nu }\left\Vert \mu _{\sigma \left( \delta \right)}\right\Vert \Bigg\} \cdot \Bigg\{ \prod _{\delta =d-\nu +2}^{d}\left\Vert \mu _{\sigma \left( \delta \right) }\right\Vert \cdot \left\Vert P^{\sigma \left( \delta \right)}\right\Vert \Bigg\} \cdot \\ & \quad \cdot \left\Vert (id^{1}\widehat{\otimes }\ldots \widehat{\otimes }\mu _{\sigma \left(d-\nu +1\right) }\circ \left( id^{\sigma \left( d-\nu +1\right) }-P^{\sigma \left( d-\nu +1\right) }\right) \widehat{\otimes }\ldots \widehat{\otimes }id^{d})(h)\right\Vert _{\varepsilon }\Bigg\} . \end{align*}

Here \(S_{d} \) is the symmetric group of all permutations of \(\{ 1, \dots , d\} \).

Proof
We investigate
\[ \widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\Big(h-(\widehat{\otimes }_{\delta =1}^{d}P^{\delta })(h)\Big)=\left[ \widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\circ \left( \widehat{\otimes }_{\delta =1}^{d}id^{\delta }-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }\right) \right] (h). \]

Let \(\sigma \in S_{d}\) be an arbitrary permutation. A decomposition of \(\widehat{\otimes }_{\delta =1}^{d}id^{\delta }-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }\) analogous to the one employed by Haussmann and Pottinger together with a density argument yields the equality

\begin{align*} & \widehat{\otimes }_{\delta =1}^{d}id^{\delta }\! \! -\! \! \widehat{\otimes }_{\delta =1}^{d}P^{\delta }= \\ & =\left( id^{1}\widehat{\otimes }id^{2}\widehat{\otimes }\ldots \widehat{\otimes }id^{d}\right) -\left( P^{1}\widehat{\otimes }P^{2}\widehat{\otimes }\ldots \widehat{\otimes }P^{d}\right) \\ & =\Big(id^{1}\widehat{\otimes }\ldots \widehat{\otimes }id^{\sigma (d)-1}\widehat{\otimes }\Big(id^{\sigma (d)}-P^{\sigma (d)}\Big)\widehat{\otimes }id^{\sigma (d)+1}\widehat{\otimes }\ldots \widehat{\otimes }id^{d}\Big)\\ & \quad +\! id^{1}\widehat{\otimes }\! \ldots \! \widehat{\otimes }\Big(id^{\sigma \left( d-1\right) }\! -\! P^{\sigma \left( d-1\right) }\Big)\widehat{\otimes }id^{\sigma \left( d-1\right) +1}\widehat{\otimes }\! \ldots \! \widehat{\otimes }P^{\sigma \left( d\right) }\widehat{\otimes }\ldots \widehat{\otimes }id^{d}\\ & \quad +\ldots +P^{1}\widehat{\otimes }P^{2}\widehat{\otimes }\ldots \widehat{\otimes }\Big(id^{\sigma \left( 1\right) }-P^{\sigma \left( 1\right) }\Big)\widehat{\otimes }P^{\sigma \left( 1\right) +1}\widehat{\otimes }\ldots \widehat{\otimes }P^{d}\\ & =\sum _{\delta =1}^{d}O_{d-\delta +1}. \end{align*}

Thus by lemma 2 for all \(h\in \widehat{\otimes }_{1\leq \delta \leq d}^{\varepsilon }X_{\delta }\), one obtains

\begin{align*} & \Big(\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\Big)\Big(h-\hat{\otimes }_{\delta =1}^{d}P^{\delta }\Big)(h)= \\ & =\sum _{\delta =1}^{d}\left( (\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta })\circ O_{d-\delta +1}\right) (h)\\ & =\left( \mu _{1}\circ id^{1}\right) \widehat{\otimes }\ldots \widehat{\otimes }\mu _{\sigma \left( d\right) }\circ \left( id^{\sigma \left( d\right) }-P^{^{\sigma \left( d\right) }}\right) \widehat{\otimes }\ldots \widehat{\otimes }\left( \mu _{d}\circ id^{d}\right) (h)+\ldots +\\ & \quad +\left( \mu _{1}\circ P^{1}\right) \widehat{\otimes }\left( \mu _{2}\circ P^{2}\right) \widehat{\otimes }\ldots \widehat{\otimes }\mu _{\sigma (1)}\circ \left( id^{\sigma \left( 1\right) }-P^{\sigma \left( 1\right) }\right) \widehat{\otimes }\ldots \widehat{\otimes }\left( \mu _{d}\circ P^{d}\right) \left( h\right) . \end{align*}

From lemma 3 we conclude that the difference considered above may be estimated as follows:

\begin{align*} & \left\Vert \Big(\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\Big)\Big(h-\Big(\widehat{\otimes }_{_{\delta }=1}^{d}P^{_{\delta }}\Big)(h)\Big)\right\Vert _{\varepsilon }\leq \\ & \leq \left\Vert (\mu _{1}\circ \text{id}^{1})\widehat{\otimes }\ldots \widehat{\otimes }\Big(\mu _{\sigma (d)}\circ (\text{id}^{\sigma (d)}-P^{\sigma (d)})\Big)\widehat{\otimes }\ldots \widehat{\otimes }(\mu _{d}\circ id^{d})(h)\right\Vert _{\varepsilon }+...+\\ & \quad +\left\Vert (\mu _{1}\circ P^{1})\widehat{\otimes }\ldots \widehat{\otimes }\Big(\mu _{\sigma (1)}\circ (\text{id}^{\sigma (1)}-P^{\sigma (1)})\Big)\widehat{\otimes }\ldots \widehat{\otimes }(\mu _{d}\circ P^{d})(h)\right\Vert _{\varepsilon }\\ & \leq \Bigg\{ \prod _{\delta =1,\delta \neq \sigma (d)}^{d}\! \! \! \big\Vert \mu _{\delta }\Vert \Bigg\} \Big\Vert \text{id}^{1}\widehat{\otimes }\ldots \widehat{\otimes }(\mu _{\sigma (d)}\! \circ \! \Big(id^{\sigma (d)}\! -\! P^{\sigma (d)})\Big)\widehat{\otimes }\ldots \widehat{\otimes }id^{d}(h)\Big\Vert _{\varepsilon }+\ldots + \\ & \quad +\Bigg\{ \prod _{\delta =1,\delta \neq \sigma (1)}^{d} \! \left\Vert \mu _{\delta }\right\Vert \! \cdot \! \Vert P^{\delta }\Vert \Bigg\} \! \cdot \! \left\Vert id^{1}\widehat{\otimes }\ldots \widehat{\otimes }\big( \mu _{\sigma \left( 1\right) }\big) \! \circ \! \Big(id^{\sigma (1)}\! -\! P^{\sigma \left( 1\right) })\Big)\widehat{\otimes }\ldots \widehat{\otimes }id^{d}(h)\right\Vert _{\varepsilon }\\ & =\sum _{v=1}^{d}\left\{ \prod _{\delta =1}^{d-v}\Vert \mu _{\sigma (\delta )}\Vert \right\} \cdot \Bigg\{ \prod _{\delta =d-\nu +2}^{d}\Vert \mu _{\sigma \left( \delta \right) }\Vert \cdot \left\Vert P^{\sigma (\delta )}\right\Vert \Bigg\} \cdot \\ & \quad \cdot \Big\Vert id^{1}\widehat{\otimes }\ldots \widehat{\otimes }\Big(\mu _{\sigma (d-\nu +1)}\circ \big( id^{\sigma (d-\nu +1)}-P^{\sigma (d-\nu +1)}\big) \Big)\widehat{\otimes }\ldots \widehat{\otimes }id^{d}(h)\Big\Vert _{\varepsilon }. \end{align*}

In the above, we have used the convention that an empty product equals \(1\). Since this is true for all permutations \(\sigma \in S_{d}\), we may pass to the minimum over all \(\sigma \in S_{d}\) on the right-hand side of the last inequality. We shall show that for all \(h\in \otimes _{\delta =1}^{d}X_{\delta }\) and all \(\mu _{\delta }:X_{\delta }\rightarrow \mathbb {R}\) (\(\mu _{\delta }\) linear and continuous), the equality

\[ \left\Vert \Big(\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\Big)(h)\right\Vert _{\varepsilon }=\left\vert \Big(\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\Big)(h)\right\vert \]

holds; this will suffice to prove the theorem. Let \(h\in \otimes _{\delta =1}^{d}X_{\delta }\). Hence \(h=\sum \limits _{i=1}^{n}x_{i,1}\otimes \ldots \otimes x_{i,d}\) for some \(n\in \mathbb {N}\). Thus

\[ \Big(\otimes _{\delta =1}^{d}\mu _{\delta }\Big)(h)=\sum _{i=1}^{n}\mu _{1}(x_{i,1})\otimes \mu _{2}(x_{i,2})\otimes \dots \otimes \mu _{d}(x_{i,d}) \]

and

\begin{align*} \Big\Vert (\otimes _{\delta =1}^{d}\mu _{\delta })(h)\Big\Vert _{\varepsilon } \ & =\sup \limits _{\substack {a_{1}\in R\\ \left\vert a_{1}\right\vert \leq 1 }}\ldots \sup _{\substack {a_{d}\in R\\ \left\vert a_{d}\right\vert \leq 1 }}\sum _{i=1}^{n}\prod _{\delta =1}^{d}a_{\delta }\cdot \mu _{\delta }(x_{i,\delta }) \vert \\ & =\sup _{\substack {a_{1}\in R\\ \left\vert a_{1}\right\vert \leq 1 }}\ldots \sup _{\substack {a_{d}\in R\\ \left\vert a_{d}\right\vert \leq 1 }}\left\vert \prod _{\delta =1}^{d}a_{\delta }\right\vert \cdot \left\vert \sum _{i=1}^{n}\prod _{\delta =1}^{d}\mu _{\delta }(x_{i,\delta })\right\vert \\ & =\left\vert \sum _{i=1}^{n}\prod _{\delta =1}^{d}\mu _{\delta }(x_{i,\delta })\right\vert \end{align*}
\begin{align*} & =\left\vert \sum _{i=1}^{n}\mu _{1}(x_{i,1})\otimes \mu _{2}(x_{i,2})\otimes \dots \otimes \mu _{d}(x_{i,d})\right\vert \\ & =\left\vert \Big(\otimes _{\delta =1}^{d}\mu _{\delta }\Big)(h)\right\vert . \end{align*}

For density reasons this equality also holds for all \(h\in \widehat{\otimes }_{\delta =1}^{d}X_{\delta }\) and for the extension \(\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\) of \(\otimes _{\delta =1}^{d}\mu _{\delta }\). Thus theorem 4 is proved.

Proof

In the sequel we shall discuss the case where \((X_{\delta },\Vert \cdot \Vert _{\delta })=\big(C(I_{\delta }),\Vert \cdot \Vert _{\infty }\big)\).

Theorem 5

For \(1\leq \delta \leq d\), let continuous linear functionals \(\mu _{\delta }:C(I_{\delta })\rightarrow \mathbb {R}\), and continuous linear operators \(P^{\delta }:C(I_{\delta })\rightarrow C(I_{\delta })\) be given. If \(h\in C\Big(\times _{\delta =1}^{d}I_{\delta }\Big)\), then

\begin{align*} & \left\vert \Big(\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }\Big)\Big(h-(\widehat{\otimes }_{\delta =1}^{d}P^{\delta })(h)\Big)\right\vert \leq \\ & \leq \min _{\sigma \in S_{d}}\Bigg\{ \sum _{\nu =1}^{d}\Bigg\{ \prod _{\delta =1}^{d-\nu } \Vert \mu _{\sigma (\delta )}\Vert \Bigg\} \cdot \Bigg\{ \prod _{\delta =d-\nu +2}^{d}\big\Vert \mu _{\sigma (\delta )}\big\Vert \cdot \Big\Vert P^{^{\sigma }(\delta )}\Big\Vert \Bigg\} \cdot \\ & \quad \quad \quad \quad \cdot \sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \sigma (d-\nu +1) }}\left\vert \Big(\mu _{\sigma (d-\nu +1}\circ \Big(id^{\sigma (d-\nu +1)}-P^{\sigma (d-\nu +1}\Big)\Big)\left( h_{\sigma (d-\nu +1}^{\bar{\xi }}\right) \right\vert \Bigg\} . \end{align*}

Here \(h_{\sigma (d-\nu +1)}^{\bar{\xi }}\) is the partial mapping belonging to fixed \(\bar{\xi }\in \times _{\delta =1,\delta \neq \sigma (d-\nu +1)}^{d}I_{\delta }\).

Proof
Recall theorem 4 This yields our claim if we disregard the term
\[ \Big\Vert id^{1}\widehat{\otimes }\dots \widehat{\otimes }\left( \mu _{\sigma \left( d-\nu +1\right) }\right) \circ \Big(id^{\sigma (d-\nu +1)}-P^{\sigma (d-\nu +1)})\Big) \widehat{\otimes }\ldots \widehat{\otimes }id^{d}\left( h\right) \Big\Vert _{\varepsilon }. \]

Using theorem 1 the above may be replaced by

\begin{equation*} \sup _{\substack {x_{\delta }\in I_{\delta }\\ 1\leq \delta \leq d \\ \delta \neq \sigma (d-\nu +1) }}\left\vert \left( \mu _{\sigma (d-v+1)}\circ \Big(\text{id}^{\sigma (d-v+1)}-P^{\sigma (d-v+1)}\Big)\right) \Big(h_{\sigma (d-\nu +1)}^{\bar{\xi }}\Big)\right\vert \end{equation*}

where \(\overline{\xi }\) is a point in \(X_{\delta =1,\delta \neq \sigma -(d-v+1)}^{d}I_{\delta }\). Plugging this upper bound into the estimate of theorem 4 gives our claim.

Proof

If we neglect to pass to the \(\min \) over \(\sigma \in S_{d}\) and use \(\sigma =\text{id}\) in the proof of theorem 5 we obtain the somewhat weaker

Corollary 6

Under the assumptions of theorem 5 the following are true:

  1. \begin{align*} \left\vert \big(\hat{\otimes }_{\delta =1}^{d}\mu _{\delta }\big)(h-\Big(\otimes _{\delta =1}^{d}P^{\delta }\Big)(h)) \right\vert & \leq \sum _{\nu =1}^{d}\left\{ \prod _{\delta =1}^{d-\nu }\Vert \mu _{\delta }\Vert \right\} \cdot \Bigg\{ \prod _{\delta =d-\nu +2}^{d}\Vert \mu _{\delta }\Vert \cdot \Vert P^{\delta }\Vert \Bigg\} .\\ & \sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq d-\nu +1 }}\left\vert \Big(\mu _{d-\nu +1}\circ \left(id^{^{d-\nu +1}}-P^{d-\nu +1}\right)\Big) (h_{d-\nu +1}^{\overline{\xi }})\right\vert . \end{align*}
  2. If, moreover, \(\Vert \mu _{\delta }\Vert =1\) and if for some constant \(A\geq 1\) the inequality \(\Vert P^{_{\delta }}\Vert \leq A\) holds for \(1\leq \delta \leq d\), then the inequality of (i) simplifies further to

    \begin{align*} \left\vert (\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta })\Big(h-(\widehat{\otimes }_{\delta =1}^{d}P^{\delta })(h)\right)\Big\vert & \leq \sum _{v=1}^{d}A^{d-v}\sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \nu }}\left\vert \Big(\mu _{v}\circ (\text{id}^{v}-P^{v})\Big)h_{\nu }^{\overline{\xi }}\right\vert \\ & \leq A^{d-1}\sum _{v=1}^{d}\sup _{x_{\substack {\delta \in I_{\delta }\\ \delta \neq \nu }}}\left\vert \mu _{v}\circ \Big(\text{id}^{v}-P^{v})\Big)(h_{\nu }^{\overline{\xi }})\right\vert . \end{align*}

A particularly important consequence of corollary 6 is given in the following theorem. It shows how certain univariate inequalities may be directly used when striving for error estimates on approximation by the tensor product of \(d\) univariate operators. For the definition of the (higher order) modulus of continuity \(\omega _{r_{\delta }}(f;\cdot )\) and that of the partial moduli \(\omega _{rv}(h;0,\ldots ,0,\ldots ,0)\), see, e.g., the books by Timan [ 8 ] and Schumaker [ 7 ] .

Theorem 7

Let linear operators \(P^{\delta }:C(I_{\delta })\rightarrow C(I_{\delta })\), \(1\leq \delta \leq d\), be given such that for \(f\in C(I_{\delta })\) and \(x\in I_{\delta }\),

\[ |f(x)-P^{\delta }(f;x)|\leq \Gamma _{\delta }(x)\cdot \omega _{r_{\delta }}\Big(f;\Delta _{\delta }(x)\Big),\quad r_{\delta }\in \mathbb {N}_{0}\ \text{fixed,} \]

and with bounded functions \(\Gamma _{\delta }\) and nonnegative real-valued functions \(\Delta _{\delta }\). Then for any \(h\in C(\times _{\delta =1}^{d}I_{\delta })\) and \(\xi =(x_{1},\ldots ,x_{d})\in \times _{\delta =1}^{d}I_{\delta }\), there holds:

\[ \Big|h(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(h,\xi )\Big|\leq A^{d-1}\sum _{v=1}^{d}\Gamma _{v}(x_{\nu })\cdot \omega _{r_{v}}\big(h;0,\ldots ,0,\Delta _{v}(x_{\nu }),0,\ldots ,0\big). \]

Here \(A\) may be chosen as \(\max \left\{ 1,\Vert P^{\delta }\Vert :1\leq \delta \leq d\right\} \) .

Proof
From corollary 6 (ii) it follows that with
\[ \widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }=\varepsilon _{\xi } \]

(point evaluation functional) that

\[ \Big|h(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(h,\xi )\Big|\leq \sum _{v=1}^{d}A^{d-v}\sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq v}}\left\vert \left( \mathrm{id}^{v}-P^{v}\right) \left( h_{\nu }^{\overline{\xi }};x_{v}\right) \right\vert , \]

where \(A\geq 1\) is such that \(\big\Vert P^{\delta }\big\Vert \leq A\) for \(1\leq \delta \leq d\).

Note that the constant \(A\) indeed exists because the \(\Gamma _{\delta }\) are bounded and \(\omega _{r}(f,\delta )\leq 2^{r}\Vert f\Vert _{\infty }\). By the above assumption on \(P^{\delta }\), \(1\leq \delta \leq d\) , and the fact that for fixed \(\bar{\xi }=(x_{1},\ldots ,x_{v-1},x_{v+1},\ldots ,x_{d})\) the function \(h_{\nu }^{\overline{\xi }}\) is given by

\[ h_{\nu }^{\overline{\xi }}:I_{\nu }\ni x\mapsto h\big(x_{1},\ldots ,x_{v-1},x,x_{v+1},\ldots ,x_{d}\big)\in \mathbb {R}, \]

it is seen that

\begin{align*} \sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \nu }}\left\vert \Big(\mathrm{id}^{v}-P^{v})\langle h_{\nu }^{\overline{\xi }},x_{v}\rangle \right\vert & \leq \sup _{_{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \nu }}}\left\vert \Gamma _{v}(x_{\nu })\cdot \omega _{r_{\nu }}(h_{\nu }^{\overline{\xi }};\Delta _{v}(x_{\nu })\Big)\right\vert \\ & =\Gamma _{\nu }\left( x_{\nu }\right) \cdot \omega _{r_{\nu }}\Big( h;0,\ldots ,0,\triangle _{\nu }\left( x_{\nu }\right) ,0,\ldots ,0\Big) . \end{align*}

Hence because \(A\geq 1\),

\[ \Big|h(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(h,\xi )\Big|\leq A^{d-1}\sum _{v=1}^{d}\Gamma _{v}(x_{\nu })\cdot \omega _{r_{\nu }}\Big( h;0,\ldots ,0,\Delta _{v}(x_{\nu }),0,\ldots ,0\Big) . \]

Proof

Corollary 8

If \(d\) operators \(P^{\delta }\), \(1\leq \delta \leq d\) , are given as in theorem 7 , and if \(h\) is a function in \(C^{r_{1},...,r_{d}}(\times _{\delta =1}^{d}I_{\delta })\) , \(\xi \in \times _{\delta =1}^{d}I_{\delta }\) , then for \(0\leq \alpha _{\delta }\leq r_{\delta }\), \(1\leq \delta \leq d\), we have

\begin{align*} & \Big|h(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(h,\xi )\Big|\leq \\ & \leq A^{d-1}\cdot \sum _{v=1}^{d}\Gamma _{v}(x_{\nu })\cdot \Delta _{v}^{\alpha _{v}}(x_{\nu })\cdot \cdot \omega _{r_{\nu }-\alpha _{v}}\Big( \big( \tfrac {\partial }{\partial x_{v}}\big) ^{\alpha _{v}}h;0,\ldots ,0,\Delta _{v}(x_{\nu }),0,\ldots ,0\Big) . \end{align*}

Proof
The inequality to be used in order to get from theorem 7 to the inequality of the corollary is
\[ \omega _{r}\left( h;0,\ldots ,0,\varepsilon ,0,\ldots ,0\right) \leq \epsilon ^{\alpha }\cdot \omega _{r-\alpha }\left( \big( \tfrac {\partial }{\partial x_{v}}\big) ^{\alpha }h;0,\ldots ,0,\varepsilon ,0,\ldots ,0\right) ,\ 0\leq \alpha \leq r, \]

where \(\varepsilon \) figures in the \(v\)-th component of

\[ (0,\ldots ,0,\varepsilon ,0,\ldots ,0). \]

Proof

3 Examples: Pointwise Inequalities for Products of Positive Linear Operators

In the above we mainly considered continuous linear mappings \(\mu _{\delta }:C(I_{\delta })\rightarrow \mathbb {R}\) and \(P^{\delta }:C(I_{\delta })\rightarrow C(I_{\delta })\). We shall assume throughout this section that \(\mu _{\delta }\) is a point evaluation functional and that \(P^{\delta }\) is positive. The assertions proved here will be based upon a special instance of a theorem by the author (see [ 1 , Theorem 4.6 ] ) and of an improvement of part of the same theorem due to Păltănea [ 6 ] . We summarize as follows.

Theorem 9

Let \(L:C[a,b]\rightarrow C[a,b]\) be a positive linear operator with \(L(e_{0})=e_{0}\), and let \(f\in C[a,b]\), \(x\in \lbrack a,b]\).

  1. For each \(h,e{\gt}0\) one has

    \begin{equation} \Big|L(f,x)-f(x)\Big|\leq \max \left\{ 1,L(\left\vert e_{1}-x\right\vert ;x)\cdot h^{-1}\right\} \cdot \big(1+h\cdot \varepsilon ^{-1}\big)\cdot \omega _{1}(f;\varepsilon ), \tag {1}\label{f.3.1}\end{equation}
    1

    where \(e_{1}:[a,b]\ni \mapsto t\in \mathbb {R}\).

  2. For each \(0{\lt}h\leq \frac{1}{2}(b-a)\) there also holds

    \begin{equation} \Big|L(f,x)-f(x)\Big|\leq h^{-1}\cdot |L(e_{1}-x;x)|\cdot \omega _{1}(f;h)+\Big[ 1+\tfrac {1}{2}\cdot h^{-2}L\Big( \left( e_{1}\! -\! x\right) ^{2};x\Big) \Big] \cdot \omega _{2}(f;h). \tag {2}\label{f.3.2}\end{equation}
    2

These inequalities will now be combined with the results from section 2 The following theorem gives an estimate in terms of first order partial moduli of continuity.

Theorem 10

Let positive linear operators \(P^{\delta }:C(I_{\delta })\rightarrow C(I_{\delta })\) be given such that \(P^{\delta }(e_{0})=e_{0}\), \(1\leq \delta \leq d\). Then for \(k\in C(X_{\delta =1}^{d}I_{\delta })\) and \(\xi =(x_{1},\dots ,x_{d})\in X_{\delta =1}^{d}I_{\delta }\) the following inequality holds:

\[ \Big|k(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(k,\xi )\Big|\leq \sum _{v=1}^{d}\alpha (P^{v};h_{v},\varepsilon _{v};x_{\nu })\cdot \omega _{1}\big(k;0,\dots ,0,\varepsilon _{v},0,\dots ,0\big), \]

where \((h_{v},\varepsilon _{v}){\gt}(0,0)\) may be arbitrarily chosen, and the function \(\alpha \) is given by

\[ \alpha (P;h,\varepsilon ;x)=\max \left\{ 1,P\big(\left\vert e_{1}-x\right\vert ;x\big)\cdot h^{-1}\right\} (1+h\varepsilon ^{-1}). \]

Proof
Because \(\mu _{\delta }=\varepsilon _{x_{\delta }}\), with \(\Vert \varepsilon _{x_{\delta }}\Vert =1\), \(\Vert P^{\delta }\Vert =1\), and \(\widehat{\otimes }_{\delta =1}^{d}\mu _{\delta }=\varepsilon _{\xi }\) with \(\xi =(x_{1},\dots ,x_{d})\), corollary 6 (ii) shows that
\begin{equation*} \Big|k(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(k,\xi )\Big|\leq \sum _{v=1}^{d}\sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \nu }}\left\vert \Big(\varepsilon _{x_{v}}\circ (\text{id}^{v}-P^{v})\Big)\big( h_{v}^{\widehat{\xi }}\big) \right\vert . \end{equation*}

For \(\bar{\xi }\) fixed, the expression

\[ \Big(\varepsilon _{x_{\nu }}\circ (id^{v}-P^{\nu })\Big) (k_{\nu }^{\bar{\xi }}) \]

is a univariate difference which may be estimated from above using (1). Note that for each coordinate we may choose a separate couple \((h_{\nu },e_{\nu }){\gt}(0,0)\). Hence

\begin{align*} & \left\vert \Big( \varepsilon _{x_{\nu }}\circ (id^{v}-P^{\nu })\Big) (k_{\nu }^{\bar{\xi }})\right\vert \leq \\ & \leq \max \left\{ 1,P^{\nu }\Big(|e_{1}-x_{\nu }|;x_{\nu }\Big)\cdot h_{\nu }^{-1}\right\} \cdot \Big(1+h_{\nu }e_{\nu }^{-1}\Big)\cdot \omega _{1}(k_{\nu }^{\bar{\xi }},e_{\nu })\newline \\ & =:\alpha (P^{\nu };h_{\nu },\varepsilon _{\nu };x_{\nu })\cdot \omega _{1}(k_{\nu }^{\bar{\xi }},\varepsilon _{\nu }). \end{align*}

(Here \(e_{1}\) simultaneously denotes the functions \(I_{\nu }\ni x_{\nu }\mapsto x_{\nu }\in \) \(R\), \(1\leq \nu \leq d\)). Thus

\[ \Big|k(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(k,\xi )\Big|\leq \sum _{\nu =1}^{d}\sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \nu }}\Big\{ \alpha \Big(P^{\nu };h_{\nu },\varepsilon _{\nu };x_{\nu }\Big)\cdot \omega _{1}(k_{\nu }^{\bar{\xi }},\varepsilon _{\nu })\Big\} . \]

Since the function \(\alpha (P^{\nu };h_{\nu },\varepsilon _{\nu };x_{\nu })\) does not depend on \(\bar{\xi }\in \times _{\delta =1,\delta \neq \nu }^{d}I_{\delta }\), the latter sum may be rewritten as

\begin{align*} & \sum _{\nu =1}^{d}\alpha \Big(P^{\nu };h_{\nu },\varepsilon _{\nu };x_{\nu }\Big)\cdot \sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \nu }}\omega _{1}(k_{\nu }^{\bar{\xi }},\varepsilon _{\nu })=\newline \\ & =\sum _{\nu =1}^{d}\alpha \Big(P^{\nu };h_{\nu },\varepsilon _{\nu };x_{\nu }\Big)\cdot \omega _{1}\big(k;0,\dots ,0,\varepsilon _{\nu },0,\dots ,0\big), \end{align*}

which is the upper bound of theorem 9 in terms of a sum of first order partial moduli of continuity.

Proof

We also have

Theorem 11

Under the assumptions of theorem 10 the following is true:

\begin{align*} \Big|k(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(k,\xi )\Big| & \leq \sum _{\nu =1}^{d}\alpha (P^{\nu };h_{\nu };x_{\nu })\cdot \omega _{2}\big(k;0,\dots ,0,h_{\nu },0,\dots ,0\big)\newline \\ & \quad +\sum _{\nu =1}^{d}\beta (P^{\nu };h_{\nu };x_{\nu })\cdot \omega _{1}\big(k;0,\dots ,0,h_{\nu },0,\dots ,0\big). \end{align*}

Here \(0{\lt}h_{\nu }\leq \frac{1}{2}[b_{\nu }-a_{\nu }]\) may be arbitrarily chosen, and the functions \(\alpha \) and \(\beta \) are given by:

\begin{align*} \alpha (P;h;x)& =1+\tfrac {1}{2}\cdot h^{-2}\cdot P\left( \left( e_{1}-x\right) ^{2};x\right) ,\text{and}\\ \beta (P;h;x)& =h\cdot \big\vert P\left( e_{1}-x;x\right) \big\vert . \end{align*}

Proof
As in the proof of theorem 10 one observes that for all \(k\in C(\times _{\delta =1}^{d}I_{\delta })\) we have
\begin{equation*} \Big|k(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(k,\xi ))\Big|\leq \sum _{v=1}^{d}\sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \nu }}\Big\{ \Big\vert \Big(\varepsilon _{x_{v}}\circ (id^{v}-P^{v})\Big)\big(k_{\nu }^{\bar{\xi }}\big) \Big\vert \Big\} . \end{equation*}

The univariate differences figuring in the sups may now be estimated using 2 from which we get

\begin{align*} \left\vert \varepsilon _{x_{v}}\circ (id^{v}-P^{v})(k_{\nu }^{\bar{\xi }})\right\vert & \leq \left[ 1+\tfrac {1}{2}h_{v}^{-2}\cdot P^{v}\left( \left( e_{1}-x_{\nu }\right) ^{2};x_{\nu }\right) \right] \cdot \omega _{2}\left( k_{\nu }^{\bar{\xi }},h_{\nu }\right) \\ & \quad +h_{v}^{-1}\cdot \Big\vert P^{v}\left( e_{1}-x_{\nu };x_{\nu }\right) \Big\vert \cdot \omega _{1}\left( k_{\nu }^{\bar{\xi }},h_{\nu }\right) \\ & =:\alpha \left( P^{v};h_{v};x_{v}\right) \cdot \omega _{2}\left( k_{\nu }^{\bar{\xi }},h_{\nu }\right) +\beta \left( P^{v};h_{v};x_{v}\right) \cdot \omega _{1}\left( k_{\nu }^{\bar{\xi }},h_{\nu }\right) . \end{align*}

Note again that for each coordinate a separate \(h_{v}\) may be chosen. Since both \(\alpha \) and \(\beta \) do not depend on \(\overline{\xi }\) we may write

\begin{align*} \Big|k(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(k,\xi )\Big|& \leq \sum _{v=1}^{d}\alpha \left( P^{v};h_{v};x_{v}\right) \cdot \sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \nu }}\omega _{2}\left( k_{\nu }^{\bar{\xi }},h_{\nu }\right) \\ & \quad +\sum _{v=1}^{d}\beta \Big( P^{v};h_{v};x_{v}\Big) \cdot \sup _{\substack {x_{\delta }\in I_{\delta }\\ \delta \neq \nu }}\omega _{1}\left( k_{\nu }^{\bar{\xi }},h_{\nu }\right) \\ & =\sum _{v=1}^{d}\alpha \Big( P^{v};h_{v};x_{v}\Big) \cdot \omega _{2}\big( k;0,...,0,h_{v},0,\dots ,0\big) \\ & \quad +\sum _{v=1}^{d}\beta \Big( P^{v};h_{v};x_{v}\Big) \cdot \omega _{1}\big( k;0,...,0,h_{v},0,\dots ,0\big) . \end{align*}

Proof

Corollary 12

If in addition to the assumptions of theorem 9 the operators \(P^{\delta }\) satisfy \(P^{\delta }(e_{1})=e_{1},1\leq \delta \leq d\) , then the inequality of theorem 11 simplifies to

\begin{equation*} \Big|k(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(k,\xi )\Big|\leq \sum _{v=1}^{d}\alpha \big( P^{v};h_{v};x_{v}\big) \cdot \omega _{2}\big( k;0,...,0,h_{v},0,\dots ,0\big). \end{equation*}

Proof
Since \(P^{\delta }(e_{i})=e_{1}\) for \(i=0,1,\) \(0\leq \delta \leq d\), we have \(\beta \left( P^{v};h_{v};x_{v}\right) =0\) for \(1\leq v\leq d\).
Proof

Corollary 13

If the operators \(P^{\delta }\) satisfy the assumptions of corollary 12 and if \(f\in C_{\delta =1}^{1,...,1}\big( \times _{\delta =1}^{d}I_{\delta }\big)\), then for \(\xi \in \times _{\delta =1}^{d}I_{\delta }\) we have

\begin{align*} \Big|k(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(k,\xi )\Big| & \leq \tfrac {3}{2}\cdot \sum _{v=1}^{d}\left( P^{v}\left( (e_{v}-x_{v})^{2};x_{v}\right) \right) ^{\frac{1}{2}}\cdot \\ & \quad \cdot \omega _{1}\left( \tfrac {\partial }{\partial x_{v}};k;0,\dots ,0,\left( P^{v}\left( (e_{1}-x_{v})^{2};x_{v}\right) \right) ^{\frac{1}{2}},0,\dots ,0\right) . \end{align*}

Proof
Here we use the inequality
\[ \omega _{2}\left( k;0,\dots ,0,h_{\nu },0,\dots ,0\right) \leq h_{\nu }\cdot \omega _{1}\left( \tfrac {\partial }{\partial x_{\nu }}k;0,\dots ,0,h_{\nu },0,\dots ,0\right) . \]

Making appropriate choices for \(h_{\nu }\), \(1\leq \nu \leq d\), gives the above inequality.

Proof

4 CONCLUDING REMARK

All fundamental estimates given in section 2 and section 3 are those concerning the differences \(\left\vert k(\xi )-\widehat{\otimes }_{\delta =1}^{d}P^{\delta }(k,\xi )\right\vert ,\) where \(k\in C(\times _{\delta =1}^{d},I_{\delta })\). It is also possible to modify the assumptions made in theorem 7 by assuming that similar inequalities hold in order to arrive at somewhat improved estimates for subspaces of smooth functions.

Furthermore, no assertions were made concerning the pointwise degree of simultaneous approximation of partial derivatives. While this is also possible, we decline to do so for the sake of brevity. Related material can be found in the author’s “Habilitationsschrift”  [ 2 ] .

Acknowledgements

The author would like to thank Ms. Laura Beutel for her efficient technical assistance during final preparation of this note.

1

H. Gonska, On approximation by linear operators: improved estimates, Anal. Numer. Theor. Approx., 14 (1985), pp. 7–32.

2

H. Gonska, Quantitative Approximation in \(C(X)\), Habilitationsschrift, University of Duisburg, 1985.

3

W. Haussmann and P. Pottinger, Zur Konvergenz mehrdimensionaler Interpolationsverfahren, Z. Angew. Math. Mech., 53 (1973), pp. T195–T197. https://doi.org/10.1002/zamm.197305312101

4

W. Haussmann and P. Pottinger, On multivariate approximation by continuous linear operators, in: Constructive Theory of Functions of Several Variables, Proc. Conf. Oberwolfach 1976 (W. Schempp and K. Zeller, eds.), Springer, Berlin, 1977, pp. 101–108.

5

W. Haussmann and P. Pottinger, On the construction and convergence of multivariate interpolation operators, J. Approx. Theory, 19 (1977), pp. 205–221.

6

R. Păltănea, Optimal estimates with moduli of continuity, Result. Math., 32 (1997), pp. 318–331. https://doi.org/10.1007/BF03322143

7

L.L. Schumaker, Spline Functions: Basic Theory, J. Wiley & Sons, New York, 1981.

8

A.F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan Co., New York, 1963.