Forthcoming

Reconstruction inversion formulas for the Laguerre Gabor transform

Authors

  • Khaled Hleili Department of Mathematics, University of Kairouan, Tunisia
  • Manel Hleili Department of Mathematics, University of Tabuk, Saudi Arabia

DOI:

https://doi.org/10.33993/jnaat542-1558

Keywords:

Laguerre hypergroup, Laguerre-Gabor transform, Hilbert space, reproducing kernel, extremal function
Abstract views: 4

Abstract

In this paper, we define and study the Gabor transform in the context of the Laguerre hypergroup. We prove some of its basic properties, such as Plancherel theorem, inversion formula and Calder´on’s reproducing inversion formula. Next, using the harmonic analysis related to Laguerre hypergroup, we examine spaces of Sobolev type for which we make explicit kernels reproducing. Exploiting the aforesaid theory, we introduce and study the extremal function associated with the Gabor transform. Finally, by utilizing the reproducing kernels we establish
important estimates for this extremal function.

Downloads

Download data is not yet available.

References

Assal, M., Rahmouni A.: An improved Hardy’s inequality associated with the Laguerre Fourier transform, Collect. Math. 64 (2), 283–291 (2013) DOI: https://doi.org/10.1007/s13348-012-0069-9

Assal, M., Ben Abdallah, H.: Generalized Besov type spaces on the Laguerre hypergroup, Ann. Math. Blaise Pascal 12 (1), 117–145 (2005) DOI: https://doi.org/10.5802/ambp.198

Bloom, W., Heyer, H.: Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics 20, Walter de Gruyter and Co.,Berlin, (1995) DOI: https://doi.org/10.1515/9783110877595

Cohen, L.: Time-frequency distributions—a review. Proc IEEE 77, 941–981 (1989) DOI: https://doi.org/10.1109/5.30749

De Vito, E., Rosasco, L., Caponnetto, A.: Discretization error analysis for Tikhonov regularization. Analysis and Applications. 4, 81–99 (2006) DOI: https://doi.org/10.1142/S0219530506000711

Faraut, J., Harzallah, K.: Deux cours d’Analyse Harmonique. In: Ecole d’´et´e d’Analyse Harmonique de Tunis. Birkh¨auser, Berlin (1984)

Gr¨ochenig, K.: Aspects of Gabor analysis on locally compact abelian groups. Gabor analysis and algorithms, pp. 211–231, Applied and Numerical Harmonic Analysis, Birkh¨auser Boston, Boston(1998) DOI: https://doi.org/10.1007/978-1-4612-2016-9_7

Hleili, K.: Windowed linear canonical transform and its applications to the time-frequency analysis. Journal of Pseudo-Differential Operators and Applications. 13(2), pages 12 (2022) DOI: https://doi.org/10.1007/s11868-022-00444-z

Hleili, K.: Some results for the windowed Fourier transform related to the spherical mean operator. Acta Mathematica Vietnamica. 46, 179–201 (2021) DOI: https://doi.org/10.1007/s40306-020-00382-2

Huang, J.: Littlewood-Paley g-functions and multipliers for the Laguerre hypergroup, J. Inequal. Appl. Art. ID 741095, 13 pp (2011) DOI: https://doi.org/10.1155/2011/741095

Jewett, RI.: Spaces with an abstract convolution of measures, Adv. Math. 18, 1–101 (1973) DOI: https://doi.org/10.1016/0001-8708(75)90002-X

Kimeldorf, GS., Wahba, G.: Some results on Tchebycheffian spline functions, J. Math. Anal. Appl. 33, 82–95 (1971) DOI: https://doi.org/10.1016/0022-247X(71)90184-3

Mao, T., Shi, Z. J., Zhou, D. X.: Approximating functions with multifeatures by deep convolutional neural networks. Analysis and Applications. 21, 93–125 (2023) DOI: https://doi.org/10.1142/S0219530522400085

Matsuura, T., Saitoh, S., Trong, DD.: inversion formulas in heat conduction multidimensional spaces, J. Inverse Ill-posed Problems 13, 479–493 (2005) DOI: https://doi.org/10.1515/156939405775297452

Mejjaoli, H.: Practical inversion formulas for the Dunkl-Gabor transform on Rd. Integral Transform. Spec. Funct. 26(12), 875–890 (2012) DOI: https://doi.org/10.1080/10652469.2011.647015

Mejjaoli, H., Trim`eche, K.: Two-wavelet multipliers on the dual of the Laguerre hypergroup and applications, Mediterr. J. Math. 16(5), Paper No. 126, 35 pp (2019) DOI: https://doi.org/10.1007/s00009-019-1389-8

Mejjaoli, H., Sraeib, N., Trim`eche, K.: Inversion theorem and quantitative uncertainty principles for the Dunkl Gabor transform on Rd. J. Pseudo-Differ. Oper. Appl. 10(4), 883–913 (2019) DOI: https://doi.org/10.1007/s11868-019-00276-4

Mejjaoli, H., Trim`eche, K.: Localization operators associated with the Laguerre-Wigner transform, Ann. Univ. Ferrara Sez. VII Sci. Mat. 66(2), 381–407 (2020) DOI: https://doi.org/10.1007/s11565-020-00348-0

Nessibi, MM., Trim`eche, K.: Inversion of the Radon transform on the Laguerre hypergroup by using generalized wavelets, J. Math. Anal. Appl. 208(2), 337–363 (1997) DOI: https://doi.org/10.1006/jmaa.1997.5299

Saitoh, S.: Best approximation, Tikhonov regularization and reproducing kernels. KodaiMath. J.28(2), 359–367 (2005) DOI: https://doi.org/10.2996/kmj/1123767016

Saitoh, S.: Approximate real inversion formulas of the Gaussian convolution, Appl. Anal. 83, 727–733 (2004) DOI: https://doi.org/10.1080/00036810410001657198

Saitoh, S.: Theory of reproducing kernels: applications to approximate solutions of bounded linear operator equations on Hilbert spaces. In book: selected papers on analysis and differential equations. AMS American Mathematical Society Translations: Series 2 230, (2010) DOI: https://doi.org/10.1090/trans2/230/06

Smale, S., Zhou, DX.: Learning theory estimates via integral operators and their approximations. Constructive approximation 26, 153–172 (2007) DOI: https://doi.org/10.1007/s00365-006-0659-y

Trim`eche, K.: Generalized Wavelets and Hypergroups. Gordon and Breach Science Publishers, Amsterdam (1997)

Wilczok, E.: Newuncertainty principles for the continuous Gabor transform and the continuous Wavelet transform. Doc. Math. 5, 201–226 (2000) DOI: https://doi.org/10.4171/dm/79

Downloads

Published

2025-09-20

Issue

Section

Articles

How to Cite

Hleili, K., & Hleili, M. (2025). Reconstruction inversion formulas for the Laguerre Gabor transform. J. Numer. Anal. Approx. Theory. https://doi.org/10.33993/jnaat542-1558