Laurent operator-based representation of discrete solutions in the Newmark scheme with non-homogeneous terms
DOI:
https://doi.org/10.33993/jnaat542-1569Keywords:
Newmark time scheme, Laurent operator, spectral analysis, error estimate, convergence analysisAbstract
This paper investigates representation results for second-order evolution equations arising in structural dynamics, discretized using the Newmark time integration scheme. More precisely, the discrete solution is expressed in terms of bi-infinite Toeplitz or Laurent operators.
A spectral analysis of the associated discrete operators is discussed, and a convergence analysis is performed under relaxed regularity assumptions on the source term. Furthermore, we examine the errors introduced by some truncation strategies, including one that is commonly used in engineering practice.
Downloads
References
K. J. Bathe and E. L. Wilson. Stability and accuracy analysis of direct integration methods. Earthq. Eng. Struct. Dyn., 1(3):283–291, Jan. 1972. DOI: https://doi.org/10.1002/eqe.4290010308
P. Bernard and G. Fleury. Stochastic newmark scheme. Probabilistic Engineering Mechanics, 17(1):45–61, Jan. 2002. DOI: https://doi.org/10.1016/S0266-8920(01)00010-8
N. Bourbaki. Théories spectrales: Chapitres 1 et 2. Springer International Publishing, 2019. DOI: https://doi.org/10.1007/978-3-030-14064-9_1
M. Brun, A. Gravouil, A. Combescure, and A. Limam. Two FETI-based heterogeneous time step coupling methods for newmark and α-schemes derived from the energy method. Comput Methods Appl Mech Eng, 283:130–176, Jan. 2015. DOI: https://doi.org/10.1016/j.cma.2014.09.010
M. Brun, E. Zafati, I. Djeran-Maigre, and F. Prunier. Hybrid asynchronous perfectly matched layer for seismic wave propagation in unbounded domains. Finite Elem Anal Des, 122:1–15, Dec. 2016. DOI: https://doi.org/10.1016/j.finel.2016.07.006
F. Chiba and T. Kako. Error analysis of newmark’s method for the second order equation with inhomogeneous term. In Proceedings of the 1999 Workshop on MHD Computations ’Study on Numerical Methods Related to Plasma Confinement’, pages 120–129, Toki, Gifu, Japan, 2000. National Institute for Fusion Science. Report Number: NIFS-PROC-46.
J. Chung and G. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech, 60:371–375, 1993. DOI: https://doi.org/10.1115/1.2900803
A. Combescure and A. Gravouil. A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng, 191(11-12):1129–1157, Jan. 2002. DOI: https://doi.org/10.1016/S0045-7825(01)00190-6
R. G. Douglas. Banach Algebra Techniques in Operator Theory. Springer New York, 1998. DOI: https://doi.org/10.1007/978-1-4612-1656-8
M. Geradin and D. J. Rixen. Mechanical Vibrations. Wiley-Blackwel, 02 2015.
L. Grafakos. Classical Fourier Analysis. Springer New York, 2014. DOI: https://doi.org/10.1007/978-1-4939-1194-3
A. Gravouil, A. Combescure, and M. Brun. Heterogeneous asynchronous time integrators for computational structural dynamics. Int J Numer Methods Eng, 102(3-4):202–232, Dec. 2014. DOI: https://doi.org/10.1002/nme.4818
H. Hilber, T. Hughes, and R. Taylor. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics, 5:283–292, 1977. DOI: https://doi.org/10.1002/eqe.4290050306
T. Kato. Perturbation Theory for Linear Operators. Springer Berlin Heidelberg, 1995. DOI: https://doi.org/10.1007/978-3-642-66282-9
N. Newmark. A method of computation for structural dynamics. J. Eng. Mech. Div., 85:67–94, 1959. DOI: https://doi.org/10.1061/JMCEA3.0000098
A. Prakash and K. D. Hjelmstad. A FETI-based multi-time-step coupling method for newmark schemes in structural dynamics. Int J Numer Methods Eng, 61(13):2183–2204, 2004. DOI: https://doi.org/10.1002/nme.1136
E. Zafati. Discussions on a macro multi-time scales coupling method: existence and uniqueness of the numerical solution and strict non-negativity of the schur complement. Numer Algorithms, 90(4):1389–1417, Nov. 2021. DOI: https://doi.org/10.1007/s11075-021-01234-2
E. Zafati. Convergence results of a heterogeneous asynchronous newmark time integrators. Esaim Math Model Numer Anal, 57(1):243–269, Jan. 2023. DOI: https://doi.org/10.1051/m2an/2022070
E. Zafati, M. Brun, I. Djeran-Maigre, and F. Prunier. Design of an efficient multidirectional explicit/implicit rayleigh absorbing layer for seismic wave propagation in unbounded domain using a strong form formulation. Int J Numer Methods Eng, 106(2):83–112, Sept. 2015. DOI: https://doi.org/10.1002/nme.5002
E. Zafati and J. A. Hout. Reflection error analysis for wave propagation problems solved by a heterogeneous asynchronous time integrator. Int J Numer Methods Eng, 115(6):651–694, May 2018. DOI: https://doi.org/10.1002/nme.5820
A. Zygmund and R. Fefferman. Trigonometric Series. Cambridge University Press, Feb. 2003. DOI: https://doi.org/10.1017/CBO9781316036587
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Eliass Zafati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.