Modified adaptive quadrature by expansion for Laplace and Helmholtz layer potentials in 2D
DOI:
https://doi.org/10.33993/jnaat542-1572Keywords:
quadrature by expansion, layer potential, Laplace problem, Helmholtz problem, adaptive quadratureAbstract
An adaptive algorithm based on quadrature by expansion (QBX) is proposed for computing layer potentials at target points near or on a smooth boundary in \(\mathbb{R}^2\). The algorithm can be viewed as major modifications to the two-phase algorithm AQBX, proposed recently by Klinteberg et al. [SIAM Journal on Scientific Computing, 40(3), 2018]. In the modified AQBX (MAQBX), we consider sharper bounds for the involved truncation error. As a result, the involved stopping criteria are met earlier, and the total computational cost is reduced. Moreover, MAQBX is a single-phase algorithm and its structure is far simpler than that of AQBX. It is recommended that QBX (or any version of it) should be applied on a small part of the boundary that is near the target point, and a classical quadrature is applied on the rest of the boundary (this is often referred to as local QBX). We partially show that for Laplace and Helmholtz potentials, parametric symmetricity of the target point with respect to the near part, can improve the convergence of QBX. Based on this observation, we suggest the local MAQBX that is very efficient in practice both for computing layer potentials and for solving boundary integral equations via the Nystr\"{o}m scheme.
Downloads
References
L. af Klinteberg and A-K. Tornberg. A fast integral equation method for solid particles in viscous flow using quadrature by expansion. J. Comput. Phys., 326:420-445, 2016. DOI: https://doi.org/10.1016/j.jcp.2016.09.006
L. af Klinteberg and A-K. Tornberg. Error estimation for quadrature by expansion in layer potential evaluation. Adv. Comput. Math., 43:195-234, 2017. DOI: https://doi.org/10.1007/s10444-016-9484-x
L. af Klinteberg and A-K. Tornberg. Adaptive quadrature by expansion for layer potential evaluation in two dimensions. SIAM J. Sci. Comput., 40:A1225-A1249, 2018. DOI: https://doi.org/10.1137/17M1121615
af Klinteberg L., C. Sorgentone, and A-K Tornberg. Quadrature error estimates for layer potentials evaluated near curved surfaces in three dimensions. Comput. Math. Appl., 111:1-19, 2022. DOI: https://doi.org/10.1016/j.camwa.2022.02.001
B.K. Alpert. Hybrid Gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput., 20:1551-1584, 1999. DOI: https://doi.org/10.1137/S1064827597325141
A.H. Barnett. Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains. SIAM J. Sci. Comput., 36:A427-A451, 2014. DOI: https://doi.org/10.1137/120900253
J.T. Beale and M-C. Lai. A method for computing nearly singular integrals. SIAM J. Numer. Anal., 38:1902-1925, 2001. DOI: https://doi.org/10.1137/S0036142999362845
J. Bremer, Z. Gimbutas, and V. Rokhlin. A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput., 32:1761-1788, 2010. DOI: https://doi.org/10.1137/080737046
O.P. Bruno and L.A. Kunyansky. A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys., 169:80-110, 2001. DOI: https://doi.org/10.1006/jcph.2001.6714
R. Chapko, R. Kress, and L. Mönch. On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack. IMA J. Numer. Anal., 20:601-619, 2000. DOI: https://doi.org/10.1093/imanum/20.4.601
D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag, Berlin, 2nd edition, 1998. DOI: https://doi.org/10.1007/978-3-662-03537-5
C.L. Epstein, L. Greengard, and A. Klöckner. On the convergence of local expansions of layer potentials. SIAM J. Numer. Anal., 51:2660-2679, 2013. DOI: https://doi.org/10.1137/120902859
R.D. Graglia and G. Lombardi. Machine precision evaluation of singular and nearly singular potential integrals by use of Gauss quadrature formulas for rational functions. IEEE T. Antenn. Propag., 56(4):981-998, 2008. DOI: https://doi.org/10.1109/TAP.2008.919181
J. Helsing. Integral equation methods for elliptic problems with boundary conditions of mixed type. J. Comput. Phys., 228:8892-8907, 2009. DOI: https://doi.org/10.1016/j.jcp.2009.09.004
J. Helsing and R. Ojala. On the evaluation of layer potentials close to their sources. J. Comput. Phys., 227:2899-2921, 2008. DOI: https://doi.org/10.1016/j.jcp.2007.11.024
S. Kapur and V. Rokhlin. High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal., 34:1331-1356, 1997. DOI: https://doi.org/10.1137/S0036142995287847
A. Klöckner, A.H. Barnett, L. Greengard, and M. O'Neil. Quadrature by expansion: A new method for the evaluation of layer potentials. J. Comput. Phys., 252:332-349, 2013. DOI: https://doi.org/10.1016/j.jcp.2013.06.027
P. Kolm and V. Rokhlin. Numerical quadratures for singular and hypersingular integrals. Comput. Math. Appl., 41:327-352, 2001. DOI: https://doi.org/10.1016/S0898-1221(00)00277-7
NIST. Digital Library of Mathematical Functions. Release 1.1.12. http://dlmf.nist.gov/, 2023.
M. Rachh, A. Klöckner, and M. O'Neil. Fast algorithms for quadrature by expansion I: Globally valid expansions. J. Comput. Phys., 345:706-731, 2017. DOI: https://doi.org/10.1016/j.jcp.2017.04.062
A. Rahimian, A. Barnett, and D. Zorin. Ubiquitous evaluation of layer potentials using quadrature by kernel-independent expansion. BIT Numer. Math., 58:423-456, 2018. DOI: https://doi.org/10.1007/s10543-017-0689-2
C. Schwab and W.L. Wendland. On numerical cubatures of singular surface integrals in boundary element methods. Numer. Math., 62:343-369, 1992. DOI: https://doi.org/10.1007/BF01396234
M. Siegel and A-K. Tornberg. A local target specific quadrature by expansion method for evaluation of layer potentials in 3D. J. Comput. Phys., 364:365-392, 2018. DOI: https://doi.org/10.1016/j.jcp.2018.03.006
C. Sorgentone and A-K Tornberg. Estimation of quadrature errors for layer potentials evaluated near surfaces with spherical topology. Adv. Comput. Math., 49:87, 2023. DOI: https://doi.org/10.1007/s10444-023-10083-7
M. Wala and A. Klöckner. A fast algorithm with error bounds for quadrature by expansion. J. Comput. Phys., 374:135-162, 2018. DOI: https://doi.org/10.1016/j.jcp.2018.05.006
M. Wala and A. Klöckner. A fast algorithm for quadrature by expansion in three dimensions. J. Comput. Phys., 388:655-689, 2019. DOI: https://doi.org/10.1016/j.jcp.2019.03.024
M. Wala and A. Klöckner. Optimization of fast algorithms for global quadrature by expansion using target-specific expansions. J. Comput. Phys., 403:108976, 2020. DOI: https://doi.org/10.1016/j.jcp.2019.108976
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hassan Majidian

This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.