Sur l'intégrabilité des fonctions multivoques
On the integrability of multivalued functions
Abstract
Not available.Downloads
References
Bartle, R. G., A general bilinear vector integral. Studia Math. 15 (1956), 337-352, MR0080721, https://doi.org/10.4064/sm-15-3-337-352
Berge, Claude Espaces topologiques: Fonctions multivoques. (French) Collection Universitaire de Mathématiques, Vol. III Dunod, Paris 1959 xi+272 pp., MR0105663.
Drewnowski, L., Topological rings of sets, continuous set functions, integration. I, II. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 269-276; ibid. 20 (1972), 277-286, MR0306432.
Dunford, Nelson, Schwartz, Jacob T., Linear operators. Part I. General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988. xiv+858 pp. ISBN: 0-471-60848-3, MR1009162.
Masse, J.C., "Integration dans les semi-groups". Collection mathématique No.23, Départment de mathématiques. Université Laval Québec, 1974.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.