Sufficient conditions of univalency for complex functions in the class \(C^1\)

Authors

  • Petru T. Mocanu "Babeş-Bolyai" University, Cluj-Napoca, Romania
Abstract views: 169

Abstract

Not available.

Downloads

Download data is not yet available.

References

W. Klaplan, Close-to-convex schlicht functions, Michigan Math. J.1. 169-185, 1952

K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokaido Univ., 2, 124-155, 1934.

S. Ozaki, On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku, A., 2, 40, 167-188, 1935.

S.E. Warschawski, On the higher derivate ives at the boundary in conformal mapping. Trans. Amer. Math. Soc., 38, 310-340, 1935.

J. Wolff, L’integrale d’une function holomorphe et a partie reelle positive dans un demiplan est univalent. C.R. Acad. Sci., Paris, 198, 13, 1209-1210, 1934.

Downloads

Published

1981-02-01

How to Cite

Mocanu, P. T. (1981). Sufficient conditions of univalency for complex functions in the class \(C^1\). Anal. Numér. Théor. Approx., 10(1), 75–79. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/1981-vol10-no1-art8

Issue

Section

Articles