Sur quelques méthodes itératives pour la résolution des équations opérationnelles

On some iterative methods for solving operational equations

Authors

  • A. Diaconu Tiberiu Popoviciu Institute of Numerical analysis, Romanian Academy, Romania
  • I. Păvăloiu Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

DOI:

https://doi.org/10.33993/jnaat11-3
Abstract views: 357

Abstract

Let \(X,Y\) be two Banach spaces and \(P:X\rightarrow Y\) a nonlinear operator. We study the semilocal convergence of the Newton, chord and Steffensen methods for which the derivative \(P^{\prime}\left( x\right) \) or the divided differences from each iteration step are approximated by a sequence of operators obtained with the Schultz method:
\begin{equation}
\left\{
\begin{array}
[c]{l}%
x_{n+1}=x_{n}-A_{n}P\left( x_{n}\right) \\
A_{n+1}=A_{n}\left( 2E-\left[ x_{n},x_{n+1};P\right] A_{n}\right)
,\qquad n=0,1,\ldots
\end{array}
\right. \label{f.1.6}%
\end{equation}
and considering the Steffensen method:%
\begin{equation}
\left\{
\begin{array}
[c]{l}%
x_{n+1}=x_{n}-A_{n}P\left( x_{n}\right) \\
A_{n+1}=A_{n}\left( 2E-\left[ x_{n+1},Q\left( x_{n+1}\right) ;P\right]
A_{n}\right) ,\qquad n=0,1,\ldots
\end{array}
\right. \label{f.1.7}%
\end{equation}

MR0381294 (52 #2191)

Zbl 0363.65046

Downloads

Download data is not yet available.

References

Collatz, I., Näherungsverfahren höherer Ordung für Gleichungen in Banach-Räumen. Archive for Rational Mechanics and analysis II (1), 66-75, 1958, https://doi.org/10.1007/bf00277919 DOI: https://doi.org/10.1007/BF00277919

Diaconu, A., Păvăloiu, I., Asupra unor metode iterative pentru rezolvarea ecuaţiilor operaţionale neliniare (I). Revista de analiză numerică şi teoria aproximaţiei, tome 1 (sous presse) (in Romanian).

Janko, B., Sur la théorie unitaire des méthodes d'itération pour la résolution des équations opérationelles non-linéaires. I. (French) Publ. Math. Inst. Hung. Acad. Sci., Ser. A 6, 301-311 (1961), Zbl 0119.12106.

Janko, B., Lösung nicht-linearer Operatorgleichungen in einem Banachraum. Bucuresti: Editura Academiei Republicii Socialiste Romania. 298 p. (1969), (in Romanian), Zbl 0176.12502.

Pavaloiu, I., Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires. Rev. Roum. Math. Pures Appl. 13, 857-861 (1968), (in French) Zbl 0165.49503.

Păvăloiu, I., Interpolations dans des espaces linéaires normés et applications. (Interpolation in linear normal spaces and applications.). Mathematica Cluj 12(35), 149-158 (1970), (in French) Zbl 0227.65039.

Păvăloiu, I., Sur les procédés itératifs à un ordre élevé de convergence. (On iteration methods with high order of convergence). Mathematica Cluj 12(35), 309-324 (1970), (in French) Zbl 0222.65072.

Păvăloiu, I., Consideraţii asupra metodelor iterative obţinute prin interpolare inversă. Studii şi cercetări matematice, XXIII, 10, 1545+1549, 1971 (in Romanian).

Popoviciu, T., Sur la delimitation de l'erreur dans l'approximation des racines d'une équation par interpolation linéaire ou quadratique. Rev. Roum. Math. Pures Appl. 13, 75-78 (1968), (in French) Zbl 0162.08401.

Sergeev, A.S., O metode hord, Sibrirski mat. jurnal, XI, 2, 282-289, 1961.

Traub, J.F., Iterative methods for the solution of equations. (Series in Automatic Computation.) Englewood Cliffs: Prentice-Hall, Inc. 1964. XVIII, 310 p. (1964), Zbl 0121.11204, https://doi.org/10.1017/s0008439500028125 DOI: https://doi.org/10.1017/S0008439500028125

Ul'm, S., Ob obobvşcenîh razdelenyh raznostjah I, Izv. Akad. Estonskoĭ S.S.R. 16, 1, 13-26, 1967 (in Russian).

Ul'm, S., Ob obobvşcenîh razdelenyh raznostjah II, Izv. Akad. Estonskoĭ S.S.R. 16, 2, 146-155, 1967 (in Russian).

Ul'm, S., Ob iteraccionnyh metodah s posledovatel'noi approksimacii obratnovo operatora. Izv. Akad. Nauk Estonskoi S.S.R., 16, 4, 403-411, 1967 (in Russian).

Downloads

Published

1972-02-01

How to Cite

Diaconu, A., & Păvăloiu, I. (1972). Sur quelques méthodes itératives pour la résolution des équations opérationnelles: On some iterative methods for solving operational equations. Rev. Anal. Numér. Théorie Approximation, 1, 45–61. https://doi.org/10.33993/jnaat11-3

Issue

Section

Articles