Sur la convergence d'une classe de méthodes itératives de J.F. Traub

On the convergence of a class of iterative methods by J.F. Traub

Authors

  • I. Păvăloiu Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

DOI:

https://doi.org/10.33993/jnaat21-15
Abstract views: 318

Abstract

Let X be a Banach space, Y a normed space and P:XY a nonlinear operator. We study the convergence of the following method for solving the equation P(x)=0  xn+1=Q(xn)[P(xn)]1P(Q(xn)), n=0,1,..., x0X where Q is a nonlinear operator associated to the nonlinear equation P(x)=0. We show that if the successive approximations of Q converge with order k2, there the above sequence converge to the solution with order k+1.

Downloads

References

Păvăloiu, I., Interpolation dans des espaces linéaires normés et applications. (French) Mathematica (Cluj) 12(35) (1970), 149-158, MR0299983.

Păvăloiu, I., Sur les procédés itératifs à un ordre élevé de convergence. (French) Mathematica (Cluj) 12(35) (1970), 309-324, MR0339486.

Păvăloiu, I., On iterative operators. (Romanian) Stud. Cerc. Mat. 23 (1971), 1537-1544, MR0341859.

Traub, J. F., Iterative methods for the solution of equations. Prentice-Hall Series in Automatic Computation Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964 xviii+310 pp., MR0169356.

Downloads

Published

1973-02-01

Issue

Section

Articles

How to Cite

Păvăloiu, I. (1973). Sur la convergence d’une classe de méthodes itératives de J.F. Traub: On the convergence of a class of iterative methods by J.F. Traub. Rev. Anal. Numér. Théorie Approximation, 2, 99-104. https://doi.org/10.33993/jnaat21-15