Supporting spheres for families of sets in product spaces

Authors

  • H. Kramer Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

DOI:

https://doi.org/10.33993/jnaat21-10
Abstract views: 222

Abstract

Not available.

Downloads

References

Caratheodory, C., Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo 32, 193, 1911. DOI: https://doi.org/10.1007/BF03014795

Dieudonné, J., Foundations of modern analysis. Pure and Applied Mathematics, Vol. X Academic Press, New York-London 1960 xiv+361 pp., MR0120319.

Eckhoff, Jürgen, Der Satz von Radon in konvexen Produktstrukturen. II. (German) Monatsh. Math. 73 1969 7-30, MR0243427, https://doi.org/10.1007/bf01297698 DOI: https://doi.org/10.1007/BF01297698

Fenchel, Werner, Über Krümmung und Windung geschlossener Raumkurven. (German) Math. Ann. 101 (1929), no. 1, 238-252, MR1512528, https://doi.org/10.1007/bf01454836 DOI: https://doi.org/10.1007/BF01454836

Hanner, Olof; Rådström, Hans, A generalization of a theorem of Fenchel. Proc. Amer. Math. Soc. 2, (1951). 589-593, MR0044142, https://doi.org/10.1090/s0002-9939-1951-0044142-0 DOI: https://doi.org/10.1090/S0002-9939-1951-0044142-0

Kramer, Horst, Németh, A. B., Supporting spheres for families of independent convex sets. Arch. Math. (Basel) 24 (1973), 91-96, MR0315590, https://doi.org/10.1007/bf01228180 DOI: https://doi.org/10.1007/BF01228180

Stoer, J., Witzgall, C., Convexity and optimization in finite dimensions. I. Die Grundlehren der mathematischen Wissenschaften, Band 163 Springer-Verlag, New York-Berlin 1970 ix+293 pp., MR0286498. DOI: https://doi.org/10.1007/978-3-642-46216-0

Valentine, Frederick A., Konvexe Mengen. (German) Übersetzung aus dem Englischen durch E. Heil. B. I.-Hochschultaschenbücher, Band 402/402a Bibliographisches Institut, Mannheim 1968 247 pp., MR0226495

Downloads

Published

1973-02-01

Issue

Section

Articles

How to Cite

Kramer, H. (1973). Supporting spheres for families of sets in product spaces. Rev. Anal. Numér. Théorie Approximation, 2, 49-53. https://doi.org/10.33993/jnaat21-10