Supporting spheres for families of sets in product spaces

Authors

  • H. Kramer Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

DOI:

https://doi.org/10.33993/jnaat21-10
Abstract views: 212

Abstract

Not available.

Downloads

Download data is not yet available.

References

Caratheodory, C., Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo 32, 193, 1911. DOI: https://doi.org/10.1007/BF03014795

Dieudonné, J., Foundations of modern analysis. Pure and Applied Mathematics, Vol. X Academic Press, New York-London 1960 xiv+361 pp., MR0120319.

Eckhoff, Jürgen, Der Satz von Radon in konvexen Produktstrukturen. II. (German) Monatsh. Math. 73 1969 7-30, MR0243427, https://doi.org/10.1007/bf01297698 DOI: https://doi.org/10.1007/BF01297698

Fenchel, Werner, Über Krümmung und Windung geschlossener Raumkurven. (German) Math. Ann. 101 (1929), no. 1, 238-252, MR1512528, https://doi.org/10.1007/bf01454836 DOI: https://doi.org/10.1007/BF01454836

Hanner, Olof; Rådström, Hans, A generalization of a theorem of Fenchel. Proc. Amer. Math. Soc. 2, (1951). 589-593, MR0044142, https://doi.org/10.1090/s0002-9939-1951-0044142-0 DOI: https://doi.org/10.1090/S0002-9939-1951-0044142-0

Kramer, Horst, Németh, A. B., Supporting spheres for families of independent convex sets. Arch. Math. (Basel) 24 (1973), 91-96, MR0315590, https://doi.org/10.1007/bf01228180 DOI: https://doi.org/10.1007/BF01228180

Stoer, J., Witzgall, C., Convexity and optimization in finite dimensions. I. Die Grundlehren der mathematischen Wissenschaften, Band 163 Springer-Verlag, New York-Berlin 1970 ix+293 pp., MR0286498. DOI: https://doi.org/10.1007/978-3-642-46216-0

Valentine, Frederick A., Konvexe Mengen. (German) Übersetzung aus dem Englischen durch E. Heil. B. I.-Hochschultaschenbücher, Band 402/402a Bibliographisches Institut, Mannheim 1968 247 pp., MR0226495

Downloads

Published

1973-02-01

How to Cite

Kramer, H. (1973). Supporting spheres for families of sets in product spaces. Rev. Anal. Numér. Théorie Approximation, 2, 49–53. https://doi.org/10.33993/jnaat21-10

Issue

Section

Articles