Approximation theory and imbedding problems


  • A.B. Németh Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Romania

Abstract views: 313


Not available.


Download data is not yet available.


Boltjanskiĭ, V. G., Mappings of compacta into Euclidean spaces. (Russian) Izv. Akad. Nauk SSSR. Ser. Mat. 23 1959 871-892, MR0117707.

Boltjanskiĭ, V. G.; Ryškov, S. S.; Šaškin, Ju. A. On k-regular imbeddings and on applications to theory of function approximation. Uspehi Mat. Nauk 15 1960 no. 6 (96), 125-132, (Russian) MR0125567

Borsuk, K., On the k-independent subsets of the Euclidean space and of the Hilbert space. Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 351-356, XXIX., MR0088710.

Curtis, Philip C., Jr., n-parameter families and best approximation. Pacific J. Math. 9 1959 1013-1027, MR0108670, DOI:

Dunham, Charles B., Unisolvence on multidimensional spaces. Canad. Math. Bull. 11 1968 469-474, MR0235362, DOI:

Haar, A., Die Minkowskische Geometrie and die annäherung an stetige Funktionen, Math. Ann. 78, 294-311, 1918, DOI:

Hewitt, E,. Stromberg, K., Real and abstract analysis. A modern treatment of the theory of functions of a real variable. Springer-Verlag, New York 1965 vii+476 pp., MR0188387.

Kiefer, J., Wolfowitz, J., On a theorem of Hoel and Levine on extrapolation designs. Ann. Math. Statist. 36 1965 1627-1655, MR0185769, DOI:

Lutts, John A., Topological spaces which admit unisolvent systems. Trans. Amer. Math. Soc. 111 1964 440-448, MR0163286, DOI:

Mairhuber, John C., On Haar's theorem concerning Chebychev approximation problems having unique solutions. Proc. Amer. Math. Soc. 7 (1956), 609-615, MR0079672, DOI:

Németh, A. B., Transformations of the Chebyshev systems. Mathematica (Cluj) 8 (31) 1966 315-333, MR0213787.

Németh, A. B., Homeomorphic projections of k-independent sets and Chebyshev subspaces of finite dimensional Chebyshev spaces. Mathematica (Cluj) 9 (32) 1967 325-333,MR0235367.

Németh, A. B., About an imbedding conjecture for k-independent sets. Fund. Math. 67 1970 203-207, MR0261576, DOI:

Phelps, Robert R., Lectures on Choquet's theorem. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London 1966 v+130 pp., MR0193470.

MR0033516 Reviewed Pontryagin, L. S. Osnovy Kombinatornoĭ Topologii. [Foundations of Combinatorial Topology] OGIZ, Moscow-Leningrad,] 1947. 143 pp. (Russian)

Rubinšteĭn, G. Š., On a method of investigation of convex sets. Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 451-454, (Russian) MR0071793.

Ryškov, S. S., On k-regular imbeddings. Dokl. Akad. Nauk SSSR 127 1959 272-273, (Russian) MR0111004.

Schoenberg, I. J.; Yang, C. T., On the unicity of solutions of problems of best approximation. Ann. Mat. Pura Appl. (4) 54 1961 1-12, MR0141927, DOI:

Sieklucki, K., Topological properties of sets admitting the Tschebycheff systems. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 1958 603-606, MR0100192.

Šaškin, Ju. A., Korovkin systems in spaces of continuous functions. Izv. Akad. Nauk SSSR Ser. Mat. 26 1962 495-512, (Russian) MR0147905.

Šaškin, Ju. A., Topological properties of sets connected with approximation theory. Izv. Akad. Nauk SSSR Ser. Mat. 29 1965 1085-1094, (Russian) MR0203700.

Šaškin, Ju. A., Interpolation families of functions and imbeddings of sets in Euclidean and projective spaces. Dokl. Akad. Nauk SSSR 174 1967 1030-1032, (Russian) MR0216487.

Šaškin, Ju. A., - (Russian)

Volkov, V. I., Some properties of Čebyšev systems. Kalinin. Gos. Ped. Inst. Uč. Zap. 26 1958 41-48, (Russian) MR0131102.

Yang, C. T. On the non-orientable closed surfaces in euclidean spaces. Canad. J. Math. 14 1962 660-668, MR0142118, DOI:




How to Cite

Németh, A. (1973). Approximation theory and imbedding problems. Rev. Anal. Numér. Théorie Approximation, 2, 61–67.