Return to Article Details Some theoretical and computational results concerning the Accelerated Overrelaxation (AOR) method
MATHEMATICA - REVUE D'ANALYSE
NUMERIQUE ET DE THÉORIE
DE LAPPRROXIMATION

L'ANALYSE NUMÉRIQUE
ET

LA THÉORIE DE L'APPROXIMATION
TOME 9
N 0 N 0 N^(0)\mathbf{N}^{\mathbf{0}}N0 1
1980
MATHEMATICA - REVUE D'ANALYSE
NUMÉRIQUE ET DE THÉORIE
DE L'APPROXIMATION
L'ANALYSE NUMÉRIQUE
ET

LA THEORIE DE
L'APPROXIMATION

Tome 9, N 0 1 N 0 1 N^(0)1\mathrm{N}^{0} 1N01
1980

COMITE DE REDACTION

OlegArąmă (sécretaire de rédaction), Gheorghe Coman, Sever Groze, Adolf Haimovici, Acad. Caius Iacob (rédacteur en chef), Dumitru V. Ionescu, Carol Kalik, Arpád Pál, Elena Popoviciu (rédacteur en chef adjoint), Ioan A. Rus, Dimitrie Stancu, Acad. Nicolae Teodorescu.

SOMMAIRE

G. Avdelas, A. Hadjidimos and A. Yeyios, Some Theoretical and Computational Results Concerning the Accelerated Overrelaxation (AOR) Method
Wolfgang W. Breckner, Eine Verallgemeinerung des Prinzips der Gleichmässigen Beschränktheit
S. Cobzaş, Non Convex Optimization Problems on Weakly Compact Subsets of Banach Spaces . . .
Adrian Dadu, Une méthode d'accélération de la convergence des séries trigonométriques
F. J. Delvos and H. Posdorf, A Boolean Method in Bivariate Interpolation
C. Kalik, Un théorème d'existence pour une inéquation variationnelle
Mircea Ivan, Différences divisées généralisées et fonctionnelles de forme simple
I. Kolumbán. Das Prinzip der Kondensation der Singularitäten präkonvexer Funktionen
Walter Kölnnen, Einige Saturationssätze für n-parametrige Halbgruppen von Operatoren
Octavian Lipovan, Sur l'intégrabilité des fonctions multivoques 75
Alexandru Lupaş, Numerical Integration by means of Gauss-Legendre Formula
C. Mustăta, The Extension of Starshaped Bounded Lipschitz Functions 93
Andrei Ney, La Δ Δ Delta\DeltaΔ-métrique, instrument d'approximation dans un clan (I)
Elena Popoviciu, Sur un théorème de la moyenne ..... 107
Radu Precup, Le théorème des contractions dans des espaces syntopogènes ..... 113
I. Ras a, On Some Results of C. A. Micchelli ..... 125
Stefan Tigan, Remarques sur certains problèmes de programmation psendo-linéaire par morceaux ..... 129
Ch. Ullrich, Intervallrechnung über vollständig schwachgeordneten Vektoiden133

SOME THEORETICAL AND COMPUTATIONAL RESULTS CONCERNING THE ACCELERATED OVERRELAXATION (AOR) METHOD

byG. AVDELAS, A. HADJIDIMOS and A. YEYIOS(Ioannina, Greece)

1. Introduction

Very recently HADJIDIMOS (1978) has introduced a new iterative method for the numerical solution of a linear system A x = b A x = b Ax=bA x=bAx=b, where A A AAA is an n × n n × n n xx nn \times nn×n known matrix, x x xxx an unknown n n nnn-dimensional vector and b b bbb a known vector of the same dimension. By splitting A A AAA into the sum D A L D A L D-A_(L)-D-A_{L}-DAL - A U A U A_(U)A_{U}AU, where D D DDD is the diagonal part of A A AAA and A L A L A_(L)A_{L}AL and A U A U A_(U)A_{U}AU the strictly lower and upper triangular parts of A A AAA multiplied by -1 and assuming that det ( D ) 0 ( D ) 0 (D)!=0(D) \neq 0(D)0, the corresponding AOR scheme has the following form:
(1.1) ( I v L ) x ( n + 1 ) = [ ( 1 ω ) I + ( ω r ) L + ω U ] x ( n ) + ω c n = 0 , 1 , 2 , ( I v L ) x ( n + 1 ) = [ ( 1 ω ) I + ( ω r ) L + ω U ] x ( n ) + ω c n = 0 , 1 , 2 , (I-vL)x^((n+1))=[(1-omega)I+(omega-r)L+omega U]x^((n))+omega c∣n=0,1,2,dots(I-v L) x^{(n+1)}=[(1-\omega) I+(\omega-r) L+\omega U] x^{(n)}+\omega c \mid n=0,1,2, \ldots(IvL)x(n+1)=[(1ω)I+(ωr)L+ωU]x(n)+ωcn=0,1,2,
where L = D 1 A L , U = D 1 A U , c = D 1 b , I L = D 1 A L , U = D 1 A U , c = D 1 b , I L=D^(-1)A_(L),U=D^(-1)A_(U),c=D^(-1)b,IL=D^{-1} A_{L}, U=D^{-1} A_{U}, c=D^{-1} b, IL=D1AL,U=D1AU,c=D1b,I is the unit matrix of order n , r n , r n,rn, rn,r is the acceleration parameter, ω 0 ω 0 omega!=0\omega \neq 0ω0 is the overrelaxation parameter and x ( 0 ) x ( 0 ) x^((0))x^{(0)}x(0) arbitrary. The iterative matrix of scheme (1.1) is given by
L r , ω = ( I r L ) 1 [ ( 1 ω ) I + ( ω r ) L + ω U ] . L r , ω = ( I r L ) 1 [ ( 1 ω ) I + ( ω r ) L + ω U ] . L_(r,omega)=(I-rL)^(-1)[(1-omega)I+(omega-r)L+omega U].L_{r, \omega}=(I-r L)^{-1}[(1-\omega) I+(\omega-r) L+\omega U] .Lr,ω=(IrL)1[(1ω)I+(ωr)L+ωU].
This new two-parameter method is obviously a generalization of the sor method (since for r = ω r = ω r=omegar=\omegar=ω AOR coincides with SOR) and it should be noted that for r 0 r 0 r!=0r \neq 0r0 the AOR method is the Extrapolated SOR (ESOR) method with overrelaxation parameter r r rrr and extrapolation one s = ω / r s = ω / r s=omega//rs=\omega / rs=ω/r. Without loss of generality we shall assume throughout this paper that A I L U A I L U A-=I-L-UA \equiv I-L-UAILU since by premultiplication by D 1 D 1 D^(-1)D^{-1}D1 the new coefficient matrix A A AAA of the original system will have this form.
The purpose of this paper is to present some further basic results concerning the AOR method when the matrix A A AAA is
i) An irreducible with weak diagonal dominance matrix
ii) A positive definite matrix
iii) An L L LLL-matrix and
iv) An M M MMM-matrix
and also to show by mumerical examples its superiority compared with the SOR method.

2. A Basic Theorem

Here we state and prove a basic theorem which helps us to extend and improwe the results of hadjidimos (1978).
theorem 1. Let A A AAA be a nonsingular matrix. If the sor method with overrelaxation parameter r r rrr converges for 0 < α r β < 2 0 < α r β < 2 0 < alpha <= r <= beta < 20<\alpha \leqq r \leqq \beta<20<αrβ<2, then the aor method converges for all r r rrr and s s sss such that α r β α r β alpha <= r <= beta\alpha \leqq r \leqq \betaαrβ and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1 where s = ω / t s = ω / t s=omega//ts=\omega / ts=ω/t.
Proof. By relationship (2.7) (hadjidimos, 1978) the eigenvalues λ i λ i lambda_(i)\lambda_{i}λi of the AOR method ( r 0 r 0 r!=0r \neq 0r0 ) are given in terms of the eigenvalues v i v i v_(i)v_{i}vi of the sor metod by the expressions λ i = s ν i + 1 s λ i = s ν i + 1 s lambda_(i)=snu_(i)+1-s\lambda_{i}=s \nu_{i}+1-sλi=sνi+1s where s = ω / r s = ω / r s=omega//rs=\omega / rs=ω/r. If ν i == ρ e i θ ν i == ρ e i θ nu_(i)==rhoe^(i theta)\nu_{i}= =\rho e^{i \theta}νi==ρeiθ with 0 ρ < 1 0 ρ < 1 0 <= rho < 10 \leqq \rho<10ρ<1, then for α r β α r β alpha <= r <= beta\alpha \leqq r \leqq \betaαrβ and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1 we have that
| λ i | 2 = s 2 ρ 2 + 2 s ρ ( 1 s ) cos θ + ( 1 s ) 2 ( s ρ + 1 s ) 2 = = [ 1 s ( 1 ρ ) ] 2 < 1 λ i 2 = s 2 ρ 2 + 2 s ρ ( 1 s ) cos θ + ( 1 s ) 2 ( s ρ + 1 s ) 2 = = [ 1 s ( 1 ρ ) ] 2 < 1 {:[|lambda_(i)|^(2)=s^(2)rho^(2)+2s rho(1-s)cos theta+(1-s)^(2) <= (s rho+1-s)^(2)=],[=[1-s(1-rho)]^(2) < 1]:}\begin{array}{r} \left|\lambda_{i}\right|^{2}=s^{2} \rho^{2}+2 s \rho(1-s) \cos \theta+(1-s)^{2} \leqq(s \rho+1-s)^{2}= \\ =[1-s(1-\rho)]^{2}<1 \end{array}|λi|2=s2ρ2+2sρ(1s)cosθ+(1s)2(sρ+1s)2==[1s(1ρ)]2<1
and the AOR method converges for all α r β α r β alpha <= r <= beta\alpha \leqq r \leqq \betaαrβ and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1. In what follows we examine the extensions concerning the theory of aor method as was given by HADJIDIMOS (1978) in view of the theorem which has just been proved.

3. Irreducible Matrices with Weak Diagonal Dominance

theorem 1. Let A A AAA be an irreducible matrix with weak diagonal dominance. Then the AOR method ( r 0 r 0 r!=0r \neq 0r0 ) converges for all 0 < r 1 0 < r 1 0 < r <= 10<r \leqq 10<r1 and 0 << s 1 0 << s 1 0<<s <= 10< <s \leqq 10<<s1.
Proof. In all basic books (see varga, 1962; wachspress, 1966 ; voung, 1971) a classical theorem concerning the sor method is presented stating that the SOR method converges for 0 < r 1 0 < r 1 0 < r <= 10<r \leqq 10<r1. Thus by Theorem 2.1 above we conclude that the AOR method converges for all 0 < r 1 0 < r 1 0 < r <= 10<r \leqq 10<r1 and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1. (i.e. 0 < ω r 1 0 < ω r 1 0 < omega <= r <= 10<\omega \leqq r \leqq 10<ωr1 ). This is a corollary to the theorem of section 3 (hadjidimos, 1978) according to which the aor method converges for all 0 r 1 0 r 1 0 <= r <= 10 \leqq r \leqq 10r1 and 0 < ω 1 0 < ω 1 0 < omega <= 10<\omega \leqq 10<ω1.

4. Positive Definite Matrices

theorem 1. Let A A AAA be a positive definite (real) matrix. Then the aor method converges for 0 < ω γ 2 ( ω 2 ) 0 < ω γ 2 ( ω 2 ) 0 < omega <= gamma <= 2(omega!=2)0<\omega \leqq \gamma \leqq 2(\omega \neq 2)0<ωγ2(ω2).
Proof. Since A = I L U A = I L U A=I-L-UA=I-L-UA=ILU we have L = U T L = U T L=U^(T)L=U^{T}L=UT and also that y H A y >> 0 y H A y >> 0 y^(H)Ay>>0y^{H} A y> >0yHAy>>0 for every complex n n nnn-dimensional vector y y yyy with y H y H y^(H)y^{H}yH denoting the conjugate transpose of y y yyy. If λ λ lambda\lambdaλ is an eigenvalue of L r , ω L r , ω L_(r,omega)L_{r, \omega}Lr,ω, then for some ν 0 ν 0 nu!=0\nu \neq 0ν0 we shall have L y , ω ν = λ ν L y , ω ν = λ ν L_(y,omega)nu=lambda nuL_{y, \omega} \nu=\lambda \nuLy,ων=λν and hence
( I r L ) 1 [ ( 1 ω ) I + ( ω r ) L + ω U ] v = λ v , or [ ( 1 ω ) I + ( ω r ) L + ω U ] v = λ ( I r L ) v . ( I r L ) 1 [ ( 1 ω ) I + ( ω r ) L + ω U ] v = λ v ,  or  [ ( 1 ω ) I + ( ω r ) L + ω U ] v = λ ( I r L ) v . {:[(I-rL)^(-1)[(1-omega)I+(omega-r)L+omega U]v=lambda v","" or "],[[(1-omega)I+(omega-r)L+omega U]v=lambda(I-rL)v.]:}\begin{aligned} & (I-r L)^{-1}[(1-\omega) I+(\omega-r) L+\omega U] v=\lambda v, \text { or } \\ & {[(1-\omega) I+(\omega-r) L+\omega U] v=\lambda(I-r L) v .} \end{aligned}(IrL)1[(1ω)I+(ωr)L+ωU]v=λv, or [(1ω)I+(ωr)L+ωU]v=λ(IrL)v.
Multiplying both sides on the left by ν H ν H nu^(H)\nu^{H}νH and solving for λ λ lambda\lambdaλ, assuming for the moment that v H ( I r L ) v 0 v H ( I r L ) v 0 v^(H)(I-rL)v!=0v^{H}(I-r L) v \neq 0vH(IrL)v0, we obtain
λ = ( 1 ω ) ν H ν + ( ω γ ) ν H L ν + ω ν H U ν ν H ( I γ L ) ν = ( 1 ω ) ν H ν + ( ω γ ) ν H L ν + ω ν H U ν ν H ν γ ν H L ν λ = ( 1 ω ) ν H ν + ( ω γ ) ν H L ν + ω ν H U ν ν H ( I γ L ) ν = ( 1 ω ) ν H ν + ( ω γ ) ν H L ν + ω ν H U ν ν H ν γ ν H L ν lambda=((1-omega)nu^(H)nu+(omega-gamma)nu^(H)L_(nu)+omeganu^(H)U_(nu))/(nu^(H)(I-gamma L)nu)=((1-omega)nu^(H)nu+(omega-gamma)nu^(H)L_(nu)+omeganu^(H)U_(nu))/(nu^(H)nu-gammanu^(H)L_(nu))\lambda=\frac{(1-\omega) \nu^{H} \nu+(\omega-\gamma) \nu^{H} L_{\nu}+\omega \nu^{H} U_{\nu}}{\nu^{H}(I-\gamma L) \nu}=\frac{(1-\omega) \nu^{H} \nu+(\omega-\gamma) \nu^{H} L_{\nu}+\omega \nu^{H} U_{\nu}}{\nu^{H} \nu-\gamma \nu^{H} L_{\nu}}λ=(1ω)νHν+(ωγ)νHLν+ωνHUννH(IγL)ν=(1ω)νHν+(ωγ)νHLν+ωνHUννHνγνHLν
Since L = U T L = U T L=U^(T)L=U^{T}L=UT we have
ν H U ν = ν H L T ν = ( ν T L ν ) T = ν T L ν = ( ν H L ν ) ν H U ν = ν H L T ν = ν T L ν T = ν T L ν = ν H L ν nu^(H)U nu=nu^(H)L^(T)nu=(nu^(T)Lnu^(**))^(T)=nu^(T)Lnu^(**)=(nu^(H)L nu)^(**)\nu^{H} U \nu=\nu^{H} L^{T} \nu=\left(\nu^{T} L \nu^{*}\right)^{T}=\nu^{T} L \nu^{*}=\left(\nu^{H} L \nu\right)^{*}νHUν=νHLTν=(νTLν)T=νTLν=(νHLν)
where ν ν nu^(**)\nu^{*}ν is the complex conjugate matrix of ν ν nu\nuν.
Thus if we let
(4.1) v H L v v H v = z , then (4.1) v H L v v H v = z ,  then  {:(4.1)(v^(H)L_(v))/(v^(H)_(v))=z","" then ":}\begin{equation*} \frac{v^{H} L_{v}}{v^{H}{ }_{v}}=z, \text { then } \tag{4.1} \end{equation*}(4.1)vHLvvHv=z, then 
(4.2) z = ( v H L ν v H ν ) = ( v H L ν ) v H ν = v H U ν v H ν and hence λ = 1 ω + ( ω ν ) z + ω z 1 r z . (4.2) z = v H L ν v H ν = v H L ν v H ν = v H U ν v H ν  and hence  λ = 1 ω + ( ω ν ) z + ω z 1 r z . {:[(4.2)z^(**)=((v^(H)L_(nu))/(v^(H)nu))^(**)=((v^(H)L nu)^(**))/(v^(H)nu)=(v^(H)U_(nu))/(v^(H)nu)" and hence "],[lambda=(1-omega+(omega-nu)z+omegaz^(**))/(1-rz).]:}\begin{gather*} z^{*}=\left(\frac{v^{H} L_{\nu}}{v^{H} \nu}\right)^{*}=\frac{\left(v^{H} L \nu\right)^{*}}{v^{H} \nu}=\frac{v^{H} U_{\nu}}{v^{H} \nu} \text { and hence } \tag{4.2}\\ \lambda=\frac{1-\omega+(\omega-\nu) z+\omega z^{*}}{1-r z} . \end{gather*}(4.2)z=(vHLνvHν)=(vHLν)vHν=vHUνvHν and hence λ=1ω+(ων)z+ωz1rz.
If we put z = α + β i z = α + β i z=alpha+beta iz=\alpha+\beta iz=α+βi where α α alpha\alphaα and β β beta\betaβ are real we have
| λ | = | ( 1 γ α + 2 ω α ω ) γ β i 1 γ α γ β i | . | λ | = ( 1 γ α + 2 ω α ω ) γ β i 1 γ α γ β i . |lambda|=|((1-gamma alpha+2omega alpha-omega)-gamma beta i)/(1-gamma alpha-gamma beta i)|.|\lambda|=\left|\frac{(1-\gamma \alpha+2 \omega \alpha-\omega)-\gamma \beta i}{1-\gamma \alpha-\gamma \beta i}\right| .|λ|=|(1γα+2ωαω)γβi1γαγβi|.
To prove the validity of the theorem it is sufficient to show that | λ | < 1 | λ | < 1 |lambda| < 1|\lambda|<1|λ|<1 for 0 < ω r 2 ( ω 2 ) 0 < ω r 2 ( ω 2 ) 0 < omega <= r <= 2(omega!=2)0<\omega \leqq r \leqq 2(\omega \neq 2)0<ωr2(ω2) or equivalently that
ω 2 ( 2 α 1 ) 2 + 2 ω ( 1 r α ) ( 2 α 1 ) < 0 . ω 2 ( 2 α 1 ) 2 + 2 ω ( 1 r α ) ( 2 α 1 ) < 0 . omega^(2)(2alpha-1)^(2)+2omega(1-r alpha)(2alpha-1) < 0.\omega^{2}(2 \alpha-1)^{2}+2 \omega(1-r \alpha)(2 \alpha-1)<0 .ω2(2α1)2+2ω(1rα)(2α1)<0.
Since ω > 0 ω > 0 omega > 0\omega>0ω>0 we must show that
(4.3) ω ( 2 α 1 ) 2 + 2 ( 1 r α ) ( 2 α 1 ) < 0 (4.3) ω ( 2 α 1 ) 2 + 2 ( 1 r α ) ( 2 α 1 ) < 0 {:(4.3)omega(2alpha-1)^(2)+2(1-r alpha)(2alpha-1) < 0:}\begin{equation*} \omega(2 \alpha-1)^{2}+2(1-r \alpha)(2 \alpha-1)<0 \tag{4.3} \end{equation*}(4.3)ω(2α1)2+2(1rα)(2α1)<0
Using (4.1) and (4.2) we have that
z + z = 2 α = v H L ν v H ν + v H U ν v H ν = v H ( L + U ) ν v H ν = v H ( I A ) ν v H ν = 1 v H A ν v H ν < 1 z + z = 2 α = v H L ν v H ν + v H U ν v H ν = v H ( L + U ) ν v H ν = v H ( I A ) ν v H ν = 1 v H A ν v H ν < 1 z+z^(**)=2alpha=(v^(H)L_(nu))/(v^(H nu))+(v^(H)U_(nu))/(v^(H nu))=(v^(H)(L+U)nu)/(v^(H nu))=(v^(H)(I-A)nu)/(v^(H nu))=1-(v^(H)A nu)/(v^(H nu)) < 1z+z^{*}=2 \alpha=\frac{v^{H} L_{\nu}}{v^{H \nu}}+\frac{v^{H} U_{\nu}}{v^{H \nu}}=\frac{v^{H}(L+U) \nu}{v^{H \nu}}=\frac{v^{H}(I-A) \nu}{v^{H \nu}}=1-\frac{v^{H} A \nu}{v^{H \nu}}<1z+z=2α=vHLνvHν+vHUνvHν=vH(L+U)νvHν=vH(IA)νvHν=1vHAνvHν<1
since A A AAA is positive definite. This gives that α < 1 / 2 α < 1 / 2 alpha < 1//2\alpha<1 / 2α<1/2. Relationship (4.3) is now equivalent to
(4.4) ω ( 2 α 1 ) + 2 ( 1 γ α ) > 0 (4.4) ω ( 2 α 1 ) + 2 ( 1 γ α ) > 0 {:(4.4)omega(2alpha-1)+2(1-gamma alpha) > 0:}\begin{equation*} \omega(2 \alpha-1)+2(1-\gamma \alpha)>0 \tag{4.4} \end{equation*}(4.4)ω(2α1)+2(1γα)>0
which, we observe, is satisfied for r = ω r = ω r=omegar=\omegar=ω, since 2 ω > 0 2 ω > 0 2-omega > 02-\omega>02ω>0. For r = 2 r = 2 r=2r=2r=2 (4.4) gives ( 1 2 α ) ( 2 ω ) > 0 ( 1 2 α ) ( 2 ω ) > 0 (1-2alpha)(2-omega) > 0(1-2 \alpha)(2-\omega)>0(12α)(2ω)>0 which is also valid. For γ ω , 2 γ ω , 2 gamma!=omega,2\gamma \neq \omega, 2γω,2 we have to distinguish cases. Thus if α 0 ( 4.4 ) α 0 ( 4.4 ) alpha <= 0(4.4)\alpha \leqq 0(4.4)α0(4.4) becomes 2 α ( r ω ) + 2 ω > 0 2 α ( r ω ) + 2 ω > 0 -2alpha(r-omega)+2-omega > 0-2 \alpha(r-\omega)+2-\omega>02α(rω)+2ω>0 which is readily seen to hold. If α > 0 α > 0 alpha > 0\alpha>0α>0 then we have
2 α ( γ ω ) + 2 ω > 2 α ( γ ω ) + γ ω = ( γ ω ) ( 1 2 α ) > 0 . 2 α ( γ ω ) + 2 ω > 2 α ( γ ω ) + γ ω = ( γ ω ) ( 1 2 α ) > 0 . -2alpha(gamma-omega)+2-omega > -2alpha(gamma-omega)+gamma-omega=(gamma-omega)(1-2alpha) > 0.-2 \alpha(\gamma-\omega)+2-\omega>-2 \alpha(\gamma-\omega)+\gamma-\omega=(\gamma-\omega)(1-2 \alpha)>0 .2α(γω)+2ω>2α(γω)+γω=(γω)(12α)>0.
Thus | λ | < 1 | λ | < 1 |lambda| < 1|\lambda|<1|λ|<1 and the convergence follows. It remains to be proved that v H ( I γ L ) v 0 v H ( I γ L ) v 0 v^(H)(I-gamma L)v!=0v^{H}(I-\gamma L) v \neq 0vH(IγL)v0. For this we assume that v H ( I γ L ) v = 0 v H ( I γ L ) v = 0 v^(H)(I-gamma L)v=0v^{H}(I-\gamma L) v=0vH(IγL)v=0. Then it will be
ν H ( I r L ) ν ν H ν = 0 giving that 1 r ν H L ν ν H H ν = 0 , or 1 r z = 0 ν H ( I r L ) ν ν H ν = 0  giving that  1 r ν H L ν ν H H ν = 0 ,  or  1 r z = 0 (^(nu^(H))(I-rL)nu)/(()nu^(H)nu)=0" giving that "1-r(nu^(H)L_(nu))/(nu^(H)H_(nu))=0," or "1-rz=0\frac{{ }^{\nu^{H}}(I-r L) \nu}{{ } \nu^{H} \nu}=0 \text { giving that } 1-r \frac{\nu^{H} L_{\nu}}{\nu^{H} H_{\nu}}=0, \text { or } 1-r z=0νH(IrL)ννHν=0 giving that 1rνHLννHHν=0, or 1rz=0
which implies that 1 r α = 0 1 r α = 0 1-r alpha=01-r \alpha=01rα=0 and r β = 0 r β = 0 r beta=0r \beta=0rβ=0. Since r 0 r 0 r!=0r \neq 0r0 we have that β = 0 β = 0 beta=0\beta=0β=0 and α = 1 / γ α = 1 / γ alpha=1//gamma\alpha=1 / \gammaα=1/γ. But 1 / γ 1 / 2 1 / γ 1 / 2 1//gamma >= 1//21 / \gamma \geqq 1 / 21/γ1/2 or equivalently 2 α 1 2 α 1 2alpha >= 12 \alpha \geqq 12α1 which is not possible because 2 α < 1 2 α < 1 2alpha < 12 \alpha<12α<1.
Remark. By theorems 3.6 (young, 1971, p. 113) and 2.1 of this paper we can show the convergence of the AOR method for 0 < v < 2 0 < v < 2 0 < v < 20<v<20<v<2 and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1, where s = ω / r s = ω / r s=omega//rs=\omega / rs=ω/r. This, however does not include the case r = 2 r = 2 r=2r=2r=2. So the theorem 4.1 of the present section is more general.

5. L-and M-Matrices

THEOREM 1. Let A A AAA be an L L LLL-matrix. Then the aor method converges for all 0 < r 1 0 < r 1 0 < r <= 10<r \leqq 10<r1 and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1, where s = ω / r s = ω / r s=omega//rs=\omega / rs=ω/r if and only if the Jacobi method converges ( ρ ( B ) < 1 , B L + U ) ( ρ ( B ) < 1 , B L + U ) (rho(B) < 1,B-=L+U)(\rho(B)<1, B \equiv L+U)(ρ(B)<1,BL+U).
Proof. If ρ ( B ) < 1 ρ ( B ) < 1 rho(B) < 1\rho(B)<1ρ(B)<1 then by theorem 5.1 (a) (young, 1971, p. 120) we have that the sor method converges for 0 < r 1 0 < r 1 0 < r <= 10<r \leqq 10<r1 and therefore by theorem 2.1 of this paper the AOR method converges for 0 < r 1 0 < r 1 0 < r <= 10<r \leqq 10<r1 and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1. Conversely, if the AOR method converges for 0 < r 1 0 < r 1 0 < r <= 10<r \leqq 10<r1 and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1, then for s = 1 s = 1 s=1s=1s=1 we have that the sor method converges for 0 < r 1 0 < r 1 0 < r <= 10<r \leqq 10<r1. Therefore theorem 5.1 (a) (young, 1971, p. 120) implies that ρ ( B ) < 1 ρ ( B ) < 1 rho(B) < 1\rho(B)<1ρ(B)<1.
If we combine the theorem above with the theorem of section 4 (hadjidimos, 1978) we conclude the following more general theorem for L L LLL-matrices.
THEOREM 2. Let A A AAA be an L L LLL-matrix. Then the aor method converges for al 0 r 1 0 r 1 0 <= r <= 10 \leqq r \leqq 10r1 and 0 < ω 1 0 < ω 1 0 < omega <= 10<\omega \leqq 10<ω1 if and only if the Jacobi method coverges ( ρ ( B ) < 1 ) ( ρ ( B ) < 1 ) (rho(B) < 1)(\rho(B)<1)(ρ(B)<1).
theorem 3. Let A A AAA be an L L LLL-matrix. Then each of the following statements is equivalent to the other two.
S1. The Jacobi method converges.
S2. The SOR method converges for 0 < r 1 0 < r 1 0 < r <= 10<r \leqq 10<r1.
S3 The AOR method converges for 0 r 1 0 r 1 0 <= r <= 10 \leqq r \leqq 10r1 and 0 < ω 1 0 < ω 1 0 < omega <= 10<\omega \leqq 10<ω1.
Proof. From S1| we can easily go to S2| and S3| by using theorem 5.2 above. By theorems 5.1 (a) (voung, p. 120) and 5.2 of this paper $ 2 $ 2 $2\$ 2$2 implies S 1 S 1 ¯ bar(S1)\overline{\mathrm{S} 1}S1 and S 3 S ¯ 3 ¯ bar(S) bar(3)\overline{\mathrm{S}} \overline{3}S3. Finally S 3 S 3 ¯ bar(S3)\overline{\mathrm{S} 3}S3 implies S 1 S 1 ¯ bar(S1)\overline{\mathrm{S} 1}S1 for r = 0 , ω = 1 r = 0 , ω = 1 r=0,omega=1r=0, \omega=1r=0,ω=1 and | S 2 | | S 2 ¯ | | bar(S2)||\overline{\mathrm{S} 2}||S2| for ω = r ω = r omega=r\omega=rω=r.
theorem 4. Let A A AAA be an L L LLL-matrix. Then, the aor method converges for 0 < r < 2 1 + p ( B ) 0 < r < 2 1 + p ( B ) 0 < r < (2)/(1+p(B))0<r<\frac{2}{1+p(B)}0<r<21+p(B) and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1 if and only if A A AAA is an M M MMM-matrix.
Proof. If A A AAA is an M M MMM-matrix then by theorem 7.2 (young, p.43) we have ρ ( B ) < 1 ρ ( B ) < 1 rho(B) < 1\rho(B)<1ρ(B)<1 and by theorem 5.9 (young, p. 126) we conclude that the sor method converges for 0 < r < 2 1 + p ( B ) 0 < r < 2 1 + p ( B ) 0 < r < (2)/(1+p(B))0<r<\frac{2}{1+p(B)}0<r<21+p(B). Hence by theorem 2.1 of this paper the AOR method converges for 0 < r < 2 1 + ρ ( B ) 0 < r < 2 1 + ρ ( B ) 0 < r < (2)/(1+rho(B))0<r<\frac{2}{1+\rho(B)}0<r<21+ρ(B) and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1. Conversely, if the AOR method converges for 0 < r < 2 1 + ρ ( B ) 0 < r < 2 1 + ρ ( B ) 0 < r < (2)/(1+rho(B))0<r<\frac{2}{1+\rho(B)}0<r<21+ρ(B) and 0 < s 1 0 < s 1 0 < s <= 10<s \leqq 10<s1 this implies that the sor method ( s = 1 ) ( s = 1 ) (s=1)(s=1)(s=1) converges for 0 < γ < 2 1 + ρ ( B ) 0 < γ < 2 1 + ρ ( B ) 0 < gamma < (2)/(1+rho(B))0<\gamma<\frac{2}{1+\rho(B)}0<γ<21+ρ(B). If we assume that ρ ( B ) 1 ρ ( B ) 1 rho(B) >= 1\rho(B) \geqq 1ρ(B)1 then 2 1 + ρ ( B ) 1 2 1 + ρ ( B ) 1 (2)/(1+rho(B)) <= 1\frac{2}{1+\rho(B)} \leqq 121+ρ(B)1 and by theorem 5.1 (c) (yOUNG, p. 121) we have that the sor method does not converge for any value of γ γ gamma\gammaγ such that 0 < γ 1 0 < γ 1 0 < gamma <= 10<\gamma \leqq 10<γ1 which is not true. Thus we have ρ ( B ) < 1 ρ ( B ) < 1 rho(B) < 1\rho(B)<1ρ(B)<1 and therefore A A AAA is an M M MMM-matrix according to theorem 7.2. (young, p. 43).
THEOREM 5. Let A A AAA be an M M MMM-matrix. Then the aor method converges for 0 ν 1 0 ν 1 0 <= nu <= 10 \leqq \nu \leqq 10ν1 and 0 < ω 1 0 < ω 1 0 < omega <= 10<\omega \leqq 10<ω1 and also for 1 < ν < 2 1 + ρ ( B ) 1 < ν < 2 1 + ρ ( B ) 1 < nu < (2)/(1+rho(B))1<\nu<\frac{2}{1+\rho(B)}1<ν<21+ρ(B) and 0 < ω ν 0 < ω ν 0 < omega <= nu0<\omega \leqq \nu0<ων.
Proof: The proof follows by Theorems 5.2 and 5.4.

6. Numerical examples

The following examples ensure the validity of all theorems presented previously and in addition show the asymptotical superiority of the aOR method, compared with the sor one. For this, we worked out specific examples and found out the optimum spectral radii of the corresponding iterative matrices in all cases considered. We have, to the parameters r r rrr and ω ω omega\omegaω all the values 0 ( 0.01 ) 2 0 ( 0.01 ) 2 0(0.01)20(0.01) 20(0.01)2 and 0.01 ( 0.01 ) 2 0.01 ( 0.01 ) 2 0.01(0.01)20.01(0.01) 20.01(0.01)2 respectively and independently of each other. The upper bound 2 was selected because all theorems of this paper give only sufficient conditions for the convergence of the AOR method and not necessary ones as well while in addition to that the theorem of Kahan states that if the sor method converges, then it must be 0 < ω < 2 0 < ω < 2 0 < omega < 20<\omega<20<ω<2.
Using the UNIVAC 1106 Computer of the University of Salonica and with a maximum permissible relative error E = 10 4 E = 10 4 E=10^(-4)E=10^{-4}E=104, in finding the spectral radii, we have found that:
i) In the case where A A AAA is the following irreducible with weak diagonal dominance matrix
A = [ 1 0.5 0.25 0.6 1 0.2 0.5 0.3 1 ] A = 1 0.5 0.25 0.6 1 0.2 0.5 0.3 1 A=[[1,0.5,-0.25],[0.6,1,0.2],[-0.5,0.3,1]]A=\left[\begin{array}{ccc} 1 & 0.5 & -0.25 \\ 0.6 & 1 & 0.2 \\ -0.5 & 0.3 & 1 \end{array}\right]A=[10.50.250.610.20.50.31]
the optimum spectral radius of AOR method has been found for r = 1.26 r = 1.26 r=1.26r=1.26r=1.26, ω = 1.18 ω = 1.18 omega=1.18\omega=1.18ω=1.18 and is ρ opt ( L r , ω ) 0.272 ρ opt  L r , ω 0.272 rho_("opt ")(L_(r),omega)~~0.272\rho_{\text {opt }}\left(L_{r}, \omega\right) \approx 0.272ρopt (Lr,ω)0.272 while the optimum spectral radius of sor method is given for ω = 1.24 ω = 1.24 omega=1.24\omega=1.24ω=1.24 and is ρ opt ( L ω , ω ) 0.327 ρ opt  L ω , ω 0.327 rho_("opt ")(L_(omega,omega))~~0.327\rho_{\text {opt }}\left(L_{\omega, \omega}\right) \approx 0.327ρopt (Lω,ω)0.327.
ii) In the case where A A AAA is the following positive definite (real) matrix
A = [ 1 0.4 0.4 0.4 1 0.6 0.4 0.6 1 ] A = 1      0.4      0.4 0.4      1      0.6 0.4      0.6      1 A=[[1,0.4,0.4],[0.4,1,0.6],[0.4,0.6,1]]A=\left[\begin{array}{lll} 1 & 0.4 & 0.4 \\ 0.4 & 1 & 0.6 \\ 0.4 & 0.6 & 1 \end{array}\right]A=[10.40.40.410.60.40.61]
it has been found that ρ opt ( L r , ω ) 0.196 ρ opt  L r , ω 0.196 rho_("opt ")(L_(r,omega))~~0.196\rho_{\text {opt }}\left(L_{r, \omega}\right) \approx 0.196ρopt (Lr,ω)0.196 for γ = 1.03 γ = 1.03 gamma=1.03\gamma=1.03γ=1.03 and ω = 1.23 ω = 1.23 omega=1.23\omega=1.23ω=1.23 while ρ opt ( L ω , ω ) 0.282 ρ opt  L ω , ω 0.282 rho_("opt ")(L_(omega,omega))~~0.282\rho_{\text {opt }}\left(L_{\omega, \omega}\right) \approx 0.282ρopt (Lω,ω)0.282 for ω = 1.08 ω = 1.08 omega=1.08\omega=1.08ω=1.08.
iii) In the case where A A AAA is the following L L LLL-matrix with ρ ( B ) < 1 ρ ( B ) < 1 rho(B) < 1\rho(B)<1ρ(B)<1, that is, A A AAA is an M M MMM-matrix
A = [ 1 0.5 0 0 1 0.5 0.5 0 1 ] A = 1 0.5 0 0 1 0.5 0.5 0 1 A=[[1,-0.5,0],[0,1,-0.5],[-0.5,0,1]]A=\left[\begin{array}{ccc} 1 & -0.5 & 0 \\ 0 & 1 & -0.5 \\ -0.5 & 0 & 1 \end{array}\right]A=[10.50010.50.501]
we have ρ opt ( L r , ω ) 0.302 ρ opt  L r , ω 0.302 rho_("opt ")(L_(r),omega)~~0.302\rho_{\text {opt }}\left(L_{r}, \omega\right) \approx 0.302ρopt (Lr,ω)0.302 for v = 1.18 , ω = 0.90 v = 1.18 , ω = 0.90 v=1.18,omega=0.90v=1.18, \omega=0.90v=1.18,ω=0.90 and ρ opt ( L ω , ω ) 0.354 ρ opt  L ω , ω 0.354 rho_("opt ")(L_(omega,omega))~~0.354\rho_{\text {opt }}\left(L_{\omega, \omega}\right) \approx 0.354ρopt (Lω,ω)0.354 for ω = 1.00 ω = 1.00 omega=1.00\omega=1.00ω=1.00.

7. Final remarks

As has been seen from the numerical examples we gave in the previous section, it is always ρ opt ( L r , ω ) < ρ opt ( L ω , ω ) ρ opt  L r , ω < ρ opt  L ω , ω rho_("opt ")(L_(r,omega)) < rho_("opt ")(L_(omega,omega))\rho_{\text {opt }}\left(L_{r, \omega}\right)<\rho_{\text {opt }}\left(L_{\omega, \omega}\right)ρopt (Lr,ω)<ρopt (Lω,ω), that is, the AOR method converges faster than the corresponding sor one. This simply suggests that the AOR method should be used in the place of the sor method, whenever the latter is used.

REFERENCES

[1] Hadjidimos, A., Math. Comp. 32, 149-157 (1978).
[2] Varga, R. S., Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, 1962.
[3] Wachspress, E.L., Iterative Solution of Elliptic Systems and Application to the Neutron Diffusion Equations of Reactor Physics. Prentice-Hall, Englewood Cliffs, 1966.
[4] Young, D. M., Iterative Solution of Large Linear Systems. Academic Press, New York and London, 1971.