Return to Article Details On some inequalities for convex-dominanted functions

L'ANNYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION, Tome 19, No 1, 1990, pp. 21-27

ON SOME INEQUALITIES FOR CONVEX - DOM INATED FUNCTIONS

SEVER S. DRAGOMIR and NICOLETA M. IONESCU
(Băile Herculane)

Abstract. In this paper we shall give some inequalities for convex-dominated functions which improve the well-known results of Jensen, Fuchs, Jensen - Steffensen, Peckarié, Barlow -Marshall-Proschan and Vasić-Mijalković.
We shall introduce the following class of functions.
Definition 1. Let g : I R g : I R g:I rarrRg: I \rightarrow \mathbb{R}g:IR be a given convex function on interva 1 I 1 I ^(1)I{ }^{1} I1I from R R R\mathbb{R}R. The real function f : I R f : I R f:I rarr Rf: I \rightarrow Rf:IR is called g-convex-dominated on I I III if the following condition is satisfied:
(1) | λ f ( x ) + ( 1 λ ) f ( y ) f ( λ x + ( 1 λ ) y ) | λ g ( x ) + ( 1 λ ) g ( y ) g ( λ x + ( 1 λ ) y ) (1) | λ f ( x ) + ( 1 λ ) f ( y ) f ( λ x + ( 1 λ ) y ) | λ g ( x ) + ( 1 λ ) g ( y ) g ( λ x + ( 1 λ ) y ) {:[(1)|lambda f(x)+(1-lambda)f(y)-f(lambda x+(1-lambda)y)| <= ],[ <= lambda g(x)+(1-lambda)g(y)-g(lambda x+(1-lambda)y)]:}\begin{align*} & |\lambda f(x)+(1-\lambda) f(y)-f(\lambda x+(1-\lambda) y)| \leqslant \tag{1}\\ & \leqslant \lambda g(x)+(1-\lambda) g(y)-g(\lambda x+(1-\lambda) y) \end{align*}(1)|λf(x)+(1λ)f(y)f(λx+(1λ)y)|λg(x)+(1λ)g(y)g(λx+(1λ)y)
for all x , y x , y x,yx, yx,y in I I III and λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1].
The next simple characterization of convex-dominated functions is valid.
Lemma 1. Let g g ggg be a convex function on I I III and f : I R f : I R f:I rarrRf: I \rightarrow \mathbb{R}f:IR. Then the following statements are equivalent :
(i) f f fff is g g ggg-convex-dominated on I ;
(ii) g f g f g-fg-fgf and g + f g + f g+fg+fg+f are convex on I I III;
(iii) there exists two convex mappings h h hhh, l l lll on I I III such that f = 1 / 2 ( h f = 1 / 2 ( h f=1//2(h-f=1 / 2(h-f=1/2(h and g = 1 / 2 ( h + l ) g = 1 / 2 ( h + l ) g=1//2(h+l)g=1 / 2(h+l)g=1/2(h+l).
Proof. "(i) ⇔ (ii)". Condition (1) is equivalent to λ ( g ( x ) f ( x ) ) + ( 1 λ ) ( g ( y ) g ( y ) ) g ( λ x + ( 1 λ ) y ) f ( λ x + ( 1 λ ) y ) λ ( g ( x ) f ( x ) ) + ( 1 λ ) ( g ( y ) g ( y ) ) g ( λ x + ( 1 λ ) y ) f ( λ x + ( 1 λ ) y ) lambda(g(x)-f(x))+(1-lambda)(g(y)-g(y)) >= g(lambda x+(1-lambda)y)-f(lambda x+(1-lambda)y)\lambda(g(x)-f(x))+(1-\lambda)(g(y)-g(y)) \geqslant g(\lambda x+(1-\lambda) y)-f(\lambda x+(1-\lambda) y)λ(g(x)f(x))+(1λ)(g(y)g(y))g(λx+(1λ)y)f(λx+(1λ)y) and
λ ( g ( x ) + f ( x ) ) + ( 1 λ ) ( g ( y ) + f ( y ) ) g ( λ x + ( 1 λ ) y ) + f ( λ x + ( 1 λ ) y ) λ ( g ( x ) + f ( x ) ) + ( 1 λ ) ( g ( y ) + f ( y ) ) g ( λ x + ( 1 λ ) y ) + f ( λ x + ( 1 λ ) y ) lambda(g(x)+f(x))+(1-lambda)(g(y)+f(y)) >= g(lambda x+(1-lambda)y)+f(lambda x+(1-lambda)y)\lambda(g(x)+f(x))+(1-\lambda)(g(y)+f(y)) \geqslant g(\lambda x+(1-\lambda) y)+f(\lambda x+(\mathbb{1}-\lambda) y)λ(g(x)+f(x))+(1λ)(g(y)+f(y))g(λx+(1λ)y)+f(λx+(1λ)y) for all x , y x , y x,yx, yx,y in I I III and λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1], i.e., g f g f g-fg-fgf and g + f g + f g+fg+fg+f are convex on I I III iff (1) holds.
"(ii) ⇔ (iii)". It's obvious.
Now, let P ( I ) P ( I ) P(I)P(I)P(I) be the linear space of all real valued functions defined on I I III and J : F ( I ) R J : F ( I ) R J:F(I)rarrRJ: F(I) \rightarrow \mathbb{R}J:F(I)R be a functional satisfying the properties:
(J1) J ( α f + β g ) = α J ( f ) + β J ( g ) J ( α f + β g ) = α J ( f ) + β J ( g ) J(alpha f+beta g)=alpha J(f)+beta J(g)J(\alpha f+\beta g)=\alpha J(f)+\beta J(g)J(αf+βg)=αJ(f)+βJ(g) for all α , β R α , β R alpha,beta inR\alpha, \beta \in \mathbb{R}α,βR and f , g F ( I ) f , g F ( I ) f,g in F(I)f, g \in F(I)f,gF(I);
(J 2) J ( f ) 0 J ( f ) 0 J(f) >= 0J(f) \geqslant 0J(f)0 for all convex function f f fff on I I III.
The following lemma plays a very important role in the sequel.
LEMAR 2. Let J be a functional satisfying conditions (J1), (J2). Then for every convex function g g ggg and for every g g ggg-convex-dominated function f f fff on I I III, the following inequality holds:
(2) | J ( f ) | J ( g ) (2) | J ( f ) | J ( g ) {:(2)|J(f)| <= J(g):}\begin{equation*} |J(f)| \leqslant J(g) \tag{2} \end{equation*}(2)|J(f)|J(g)
Proof. Let g g ggg be a convex function and f f fff be g g ggg-convex-dominated on I I III. By Lemma, 1 it follows that g f g f g-fg-fgf and g + f g + f g+fg+fg+f are convex on I I III. Then
0 J ( g f ) = J ( g ) J ( f ) and 0 J ( g + f ) = J ( g ) + J ( f ) 0 J ( g f ) = J ( g ) J ( f )  and  0 J ( g + f ) = J ( g ) + J ( f ) 0 <= J(g-f)=J(g)-J(f)" and "0 <= J(g+f)=J(g)+J(f)0 \leqslant J(g-f)=J(g)-J(f) \text { and } 0 \leqslant J(g+f)=J(g)+J(f)0J(gf)=J(g)J(f) and 0J(g+f)=J(g)+J(f)
which gives
J ( g ) J ( f ) J ( g ) . J ( g ) J ( f ) J ( g ) . -J(g) <= J(f) <= J(g).-J(g) \leqslant J(f) \leqslant J(g) .J(g)J(f)J(g).
Since J ( g ) 0 J ( g ) 0 J(g) >= 0J(g) \geqslant 0J(g)0, inequality (2) is proven.
Corollary 2.1. Let f C 2 [ a , b ] , h O [ a , b ] , h 0 f C 2 [ a , b ] , h O [ a , b ] , h 0 f inC^(2)[a,b],h in O[a,b],h >= 0f \in C^{2}[a, b], h \in O[a, b], h \geqslant 0fC2[a,b],hO[a,b],h0 and
| f ( t ) | ∣⩽ g ( t ) for all t [ a , b ] . f ( t ) ∣⩽ g ( t )  for all  t [ a , b ] . |f^('')(t)|∣⩽g(t)" for all "t in[a,b].\left|f^{\prime \prime}(t)\right| \mid \leqslant g(t) \text { for all } t \in[a, b] .|f(t)|∣⩽g(t) for all t[a,b].
Then for all functional J J JJJ having the properties (J1), (J2), the following inequalities hold :
(3) | J ( f ) | J ( a t h ( s ) d s ) d t ) (3) | J ( f ) | J a t h ( s ) d s d t {:(3){:|J(f)| <= J(∬_(a)^(t)h(s)ds)dt):}\begin{equation*} \left.|J(f)| \leqslant J\left(\iint_{a}^{t} h(s) \mathrm{d} s\right) \mathrm{d} t\right) \tag{3} \end{equation*}(3)|J(f)|J(ath(s)ds)dt)
and
(4)
| J ( f ) | J ( ( a t | f ( s ) | d s ) d t ) , | J ( f ) | J a t f ( s ) d s d t , |J(f)| <= J(int(int_(a)^(t)|f^('')(s)|ds)dt),|J(f)| \leqslant J\left(\int\left(\int_{a}^{t}\left|f^{\prime \prime}(s)\right| \mathrm{d} s\right) \mathrm{d} t\right),|J(f)|J((at|f(s)|ds)dt),
COROLLABY 2.2. Let f , J f , J f,Jf, Jf,J be as above and M := sup t [ n , b ] | f ( t ) | M := sup t [ n , b ] f ( t ) M:=s u p_(t in[n,b])|f^('')(t)|M:=\sup _{t \in[n, b]}\left|f^{\prime \prime}(t)\right|M:=supt[n,b]|f(t)|
Then the following inequality is valid:
(5) J ( f ) 1 / 2 J J ( e 2 ) (5) J ( f ) 1 / 2 J J e 2 {:(5)∣J(f) <= 1//2quad J*J(e^(2)):}\begin{equation*} \mid J(f) \leqslant 1 / 2 \quad J \cdot J\left(e^{2}\right) \tag{5} \end{equation*}(5)J(f)1/2JJ(e2)
where e ( x ) = x e ( x ) = x e(x)=xe(x)=xe(x)=x on the interval [ a , b ] [ a , b ] [a,b][a, b][a,b].
The above corollaries follow by Lemma 2 observing that:
a ( a t h ( s ) d s ) d t a a t h ( s ) d s d t int_(a)(int_(a)^(t)h(s)ds)dt\int_{a}\left(\int_{a}^{t} h(s) \mathrm{d} s\right) \mathrm{d} ta(ath(s)ds)dt is convex, f f fff is ( a t h ( s ) d s ) d t a t h ( s ) d s d t int(int_(a)^(t)h(s)ds)dt\int\left(\int_{a}^{t} h(s) \mathrm{d} s\right) \mathrm{d} t(ath(s)ds)dt - convex-dominated; ( a t | f ( t ) | d s ) d t a t f ( t ) d s d t int(int_(a)^(t)|f^('')(t)|ds)dt\int\left(\int_{a}^{t}\left|f^{\prime \prime}(t)\right| \mathrm{d} s\right) \mathrm{d} t(at|f(t)|ds)dt is convex, f f fff is ( a t | f ( s ) | d s ) d t a t f ( s ) d s d t (int_(a)^(t)|f^('')(s)|ds)dt\left(\int_{a}^{t}\left|f^{\prime \prime}(s)\right| \mathrm{d} s\right) \mathrm{d} t(at|f(s)|ds)dt - convex -
dominated and 1 / 2 M e 2 1 / 2 M e 2 1//2Me^(2)1 / 2 M e^{2}1/2Me2 is convex and f f fff is 1 / 2 M e 2 1 / 2 M e 2 1//2Me^(2)1 / 2 M e^{2}1/2Me2 - convex dominated on [ a , b ] [ a , b ] [a,b][a, b][a,b].
The following improvement of Jensen inequality holds.
Theorem 1. Let g g ggg be a given convex function on I I III and f : I R f : I R f:I rarr Rf: I \rightarrow Rf:IR be g g ggg-convex-dominated. Then for every x i I , p i 0 ( 1 i n ) x i I , p i 0 ( 1 i n ) x_(i)in I,p_(i) >= 0(1 <= i <= n)x_{i} \in I, p_{i} \geqslant 0(1 \leqslant i \leqslant n)xiI,pi0(1in) such that P n := i = 1 n p i > 0 P n := i = 1 n p i > 0 P_(n):=sum_(i=1)^(n)p_(i) > 0P_{n}:=\sum_{i=1}^{n} p_{i}>0Pn:=i=1npi>0, we have the inequality :
(6) | 1 P n i = 1 n p i f ( x i ) f ( 1 P n i = 1 n p i x i ) | 1 P n i = 1 n p i g ( x i ) g ( 1 P n i = 1 n p i x i ) (6) 1 P n i = 1 n p i f x i f 1 P n i = 1 n p i x i 1 P n i = 1 n p i g x i g 1 P n i = 1 n p i x i {:(6)|(1)/(P_(n))sum_(i=1)^(n)p_(i)f(x_(i))-f((1)/(P_(n))sum_(i=1)^(n)p_(i)x_(i))| <= (1)/(P_(n))sum_(i=1)^(n)p_(i)g(x_(i))-g((1)/(P_(n))sum_(i=1)^(n)p_(i)x_(i)):}\begin{equation*} \left|\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)\right| \leqslant \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} g\left(x_{i}\right)-g\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \tag{6} \end{equation*}(6)|1Pni=1npif(xi)f(1Pni=1npixi)|1Pni=1npig(xi)g(1Pni=1npixi)
Proof. Let us consider the functional:
J ( f ) := 1 P n i = 1 n p i f ( x i ) f ( 1 P n i = 1 n p i x i ) , f F ( I ) J ( f ) := 1 P n i = 1 n p i f x i f 1 P n i = 1 n p i x i , f F ( I ) J(f):=(1)/(P_(n))sum_(i=1)^(n)p_(i)f(x_(i))-f((1)/(P_(n))sum_(i=1)^(n)p_(i)x_(i)),f in F(I)J(f):=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right), f \in F(I)J(f):=1Pni=1npif(xi)f(1Pni=1npixi),fF(I)
Then J J JJJ satisfy conditions (J1) and (J2) (by Jensen's inequality). Applying Lemma 2, we obtain inequality (6).
The proof is finished.
Remark 1 1 1^(@)1^{\circ}1. Let f , h f , h f,hf, hf,h be as in Corollary 2.1. Then we can put in (6) g = H g = H g=Hg=Hg=H or g = F g = F g=Fg=Fg=F where
H ( x ) := a x ( a t h ( s ) d s ) d t , F ( x ) := a x ( a t | f ( s ) | d s ) d t , x [ a , b ] H ( x ) := a x a t h ( s ) d s d t , F ( x ) := a x a t f ( s ) d s d t , x [ a , b ] H(x):=int_(a)^(x)(int_(a)^(t)h(s)ds)dt,F(x):=int_(a)^(x)(int_(a)^(t)|f^('')(s)|ds)dt,x in[a,b]H(x):=\int_{a}^{x}\left(\int_{a}^{t} h(s) \mathrm{d} s\right) \mathrm{d} t, F(x):=\int_{a}^{x}\left(\int_{a}^{t}\left|f^{\prime \prime}(s)\right| \mathrm{d} s\right) \mathrm{d} t, x \in[a, b]H(x):=ax(ath(s)ds)dt,F(x):=ax(at|f(s)|ds)dt,x[a,b]
2 2 2^(@)2^{\circ}2. If f C 2 [ a , b ] f C 2 [ a , b ] f inC^(2)[a,b]f \in \mathscr{C}^{2}[a, b]fC2[a,b] and M := sup t [ a , b ] | f ( t ) | M := sup t [ a , b ] f ( t ) M:=s u p_(t in[a,b])|f^('')(t)|M:=\sup _{t \in[a, b]}\left|f^{\prime \prime}(t)\right|M:=supt[a,b]|f(t)|, then the following inequality is valid:
(7) | f ( 1 P n i = 1 n p i x i ) 1 P n i = 1 n p i f ( x i ) | M 2 P n i = 1 n p i x i 2 ( i = 1 n p i x i ) 2 P n 2 (7) f 1 P n i = 1 n p i x i 1 P n i = 1 n p i f x i M 2 P n i = 1 n p i x i 2 i = 1 n p i x i 2 P n 2 {:(7)|f((1)/(P_(n))sum_(i=1)^(n)p_(i)x_(i))-(1)/(P_(n))sum_(i=1)^(n)p_(i)f(x_(i))| <= (M)/(2)(P_(n)sum_(i=1)^(n)p_(i)x_(i)^(2)-(sum_(i=1)^(n)p_(i)x_(i))^(2))/(P_(n)^(2)):}\begin{equation*} \left|f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)-\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)\right| \leqslant \frac{M}{2} \frac{P_{n} \sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{2}}{P_{n}^{2}} \tag{7} \end{equation*}(7)|f(1Pni=1npixi)1Pni=1npif(xi)|M2Pni=1npixi2(i=1npixi)2Pn2
where x i [ a , b ] x i [ a , b ] x_(i)in[a,b]x_{i} \in[a, b]xi[a,b] and p i ( 1 i n ) p i ( 1 i n ) p_(i)(1 <= i <= n)p_{i}(1 \leqslant i \leqslant n)pi(1in) are as above (see also Theorem 1 from [1]).
Now, we shall give an improvement of Fuchs generalization of the Majorization theorem (see [3]). This result can be written in the following form :
Theorem 2. Let a 1 a s , b 1 b s a 1 a s , b 1 b s a_(1) >= dots >= a_(s),b_(1) >= dots >= b_(s)a_{1} \geqslant \ldots \geqslant a_{s}, b_{1} \geqslant \ldots \geqslant b_{s}a1as,b1bs and q 1 , , q s q 1 , , q s q_(1),dots,q_(s)q_{1}, \ldots, q_{s}q1,,qs be real numbers such that:
i = 1 k q i a i i = 1 k q i b i ( 1 z i s 1 ) , i = 1 s q i a i = i = 1 s q i b i . i = 1 k q i a i i = 1 k q i b i 1 z i s 1 , i = 1 s q i a i = i = 1 s q i b i . sum_(i=1)^(k)q_(i)a_(i) <= sum_(i=1)^(k)q_(i)b_(i)(1 <= z_(i) <= s-1),sum_(i=1)^(s)q_(i)a_(i)=sum_(i=1)^(s)q_(i)b_(i).\sum_{i=1}^{k} q_{i} a_{i} \leqslant \sum_{i=1}^{k} q_{i} b_{i}\left(1 \leqslant z_{i} \leqslant s-1\right), \sum_{i=1}^{s} q_{i} a_{i}=\sum_{i=1}^{s} q_{i} b_{i} .i=1kqiaii=1kqibi(1zis1),i=1sqiai=i=1sqibi.
If g g ggg is convex on I I III and f f fff is g g ggg-convex dominated on I I III, then the following inequality holds:
(8) | i = 1 s q i ( f ( b i ) f ( a i ) ) | i = 1 s ( g ( b i ) g ( a i ) ) (8) i = 1 s q i f b i f a i i = 1 s g b i g a i {:(8)|sum_(i=1)^(s)q_(i)(f(b_(i))-f(a_(i)))| <= sum_(i=1)^(s)(g(b_(i))-g(a_(i))):}\begin{equation*} \left|\sum_{i=1}^{s} q_{i}\left(f\left(b_{i}\right)-f\left(a_{i}\right)\right)\right| \leqslant \sum_{i=1}^{s}\left(g\left(b_{i}\right)-g\left(a_{i}\right)\right) \tag{8} \end{equation*}(8)|i=1sqi(f(bi)f(ai))|i=1s(g(bi)g(ai))
Proof. Let consider the functional:
J ( f ) := i = 1 s q i ( f ( b i ) f ( a i ) ) , f F ( I ) J ( f ) := i = 1 s q i f b i f a i , f F ( I ) J(f):=sum_(i=1)^(s)q_(i)(f(b_(i))-f(a_(i))),f in F(I)J(f):=\sum_{i=1}^{s} q_{i}\left(f\left(b_{i}\right)-f\left(a_{i}\right)\right), f \in F(I)J(f):=i=1sqi(f(bi)f(ai)),fF(I)
Then J J JJJ satisfies conditions (J1) and (J2) (by Fuchs' inequality see alsoTheorem B from [4]). Applying Lemma 2, we deduce inequality (8).
Remarks 3 3 3^(@)3^{\circ}3. Let f , g , h , H , F f , g , h , H , F f,g,h,H,Ff, g, h, H, Ff,g,h,H,F be as in Remark 1 1 1^(@)1^{\circ}1, then in (8) we can put g = H g = H g=Hg=Hg=H оr g = F g = F g=Fg=Fg=F.
4. Let f C 2 [ a , b ] f C 2 [ a , b ] f inC^(2)[a,b]f \in C^{2}[a, b]fC2[a,b] and M := sup t [ a , b ] | f ( t ) | M := sup t [ a , b ] f ( t ) M:=s u p_(t in[a,b])|f^('')(t)|M:=\sup _{t \in[a, b]}\left|f^{\prime \prime}(t)\right|M:=supt[a,b]|f(t)|, then the following inequality holds :
(9) | i = 1 s q i ( f ( b i ) f ( a i ) ) | M / 2 i = 1 s q i ( b i 2 a i 2 ) , (9) i = 1 s q i f b i f a i M / 2 i = 1 s q i b i 2 a i 2 , {:(9)|sum_(i=1)^(s)q_(i)(f(b_(i))-f(a_(i)))| <= M//2sum_(i=1)^(s)q_(i)(b_(i)^(2)-a_(i)^(2))",":}\begin{equation*} \left|\sum_{i=1}^{s} q_{i}\left(f\left(b_{i}\right)-f\left(a_{i}\right)\right)\right| \leqslant M / 2 \sum_{i=1}^{s} q_{i}\left(b_{i}^{2}-a_{i}^{2}\right), \tag{9} \end{equation*}(9)|i=1sqi(f(bi)f(ai))|M/2i=1sqi(bi2ai2),
where a i , b i , q i ( 1 i ε ) a i , b i , q i ( 1 i ε ) a_(i),b_(i),q_(i)(1 <= i <= epsi)a_{i}, b_{i}, q_{i}(1 \leqslant i \leqslant \varepsilon)ai,bi,qi(1iε) are as above.
Now, we shall give an improvement of Jensen-Steffensen inequality.
Theoresi 3. Lot x x xxx and p p ppp be two n n nnn-tuples of real numbers such that x i I ( 1 i n , I x i I ( 1 i n , I x_(i)in I(1 <= i <= n,Ix_{i} \in I (1 \leqslant i \leqslant n, IxiI(1in,I is an interval from R ) R ) R)\mathbb{R})R) and P n > 0 P n > 0 P_(n) > 0P_{n}>0Pn>0. Then the following sentences are equivalent :
(i) For every convex function g : I R g : I R g:I rarrRg: I \rightarrow \mathbb{R}g:IR, for every g g ggg-convex-dominated function f f fff and for all monotonic n-tuple oc the inequality (6) holds;
(ii) 0 P n P n 0 P n P n 0 <= P_(n) <= P_(n)0 \leqslant P_{n} \leqslant P_{n}0PnPn for all k = 1 , 2 , , n 1 k = 1 , 2 , , n 1 k=1,2,dots,n-1k=1,2, \ldots, n-1k=1,2,,n1.
Proof. "(i) ⇒ (ii)". Tt's obvious by Jensen-Steffensen theorem.
"(ii) ⇒ (i)". Let us consider the functional:
J ( f ) := 1 P n i = 1 n p i f ( x i ) f ( 1 P n i = 1 n p i x i ) , f P ( I ) . J ( f ) := 1 P n i = 1 n p i f x i f 1 P n i = 1 n p i x i , f P ( I ) . J(f):=(1)/(P_(n))sum_(i=1)^(n)p_(i)f(x_(i))-f((1)/(P_(n))sum_(i=1)^(n)p_(i)x_(i)),f inP^(')(I).J(f):=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right), f \in \mathcal{P}^{\prime}(I) .J(f):=1Pni=1npif(xi)f(1Pni=1npixi),fP(I).
Then J werifies condifions (J1) and (J2) (by Jensen-Steffensen inequality; see for example [4], Theorem A). Apliying Lemma 2, we obtain (6).
Remarks 1 1 1^(@)1^{\circ}1 and 2 2 2^(@)2^{\circ}2 are also valid if p i ( 1 i n ) p i ( 1 i n ) p_(i)(1 <= i <= n)p_{i}(1 \leqslant i \leqslant n)pi(1in) satisfies condition (ii) of the above theorem.
Wow, we shall give another result which improves Pecarie's theorem (see [4], Theorem 1):
THERREN 4. Let x x xxx be nonincreasing n-tuple of real numbers, x i I ( 1 i n ) x i I ( 1 i n ) x_(i)in I(1 <= i <= n)x_{i} \in I (1 \leqslant i \leqslant n)xiI(1in), p real n n nnn-tuple and exists j ( 1 , 2 , , n ) j ( 1 , 2 , , n ) j in(1,2,dots,n)j \in(1,2, \ldots, n)j(1,2,,n) such that:
(10) i = 1 k p i ( x i x j ) 0 for every k such that x k x ¯ = 1 P n i = 1 n p i w i (10) i = 1 k p i x i x j 0  for every  k  such that  x k x ¯ = 1 P n i = 1 n p i w i {:(10)sum_(i=1)^(k)p_(i)(x_(i)-x_(j)) <= 0" for every "k" such that "x_(k) >= bar(x)=(1)/(P_(n))sum_(i=1)^(n)p_(i)w_(i):}\begin{equation*} \sum_{i=1}^{k} p_{i}\left(x_{i}-x_{j}\right) \leqslant 0 \text { for every } k \text { such that } x_{k} \geqslant \bar{x}=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} w_{i} \tag{10} \end{equation*}(10)i=1kpi(xixj)0 for every k such that xkx¯=1Pni=1npiwi
i = 1 n p i ( x i x j ) 0 for every k such that x k x ¯ i = 1 n p i x i x j 0  for every  k  such that  x k x ¯ sum_(i=1)^(n)p_(i)(x_(i)-x_(j)) >= 0" for every "k" such that "x_(k) <= bar(x)\sum_{i=1}^{n} p_{i}\left(x_{i}-x_{j}\right) \geqslant 0 \text { for every } k \text { such that } x_{k} \leqslant \bar{x}i=1npi(xixj)0 for every k such that xkx¯
(if x 1 x ¯ x 1 x ¯ x_(1) <= bar(x)x_{1} \leqslant \bar{x}x1x¯ the first condition in (10) is taken to be vacuous, if x n x ¯ x n x ¯ x_(n) >= bar(x)x_{n} \geqslant \bar{x}xnx¯ the second condition in (10) is taken to be vacuous). If x ¯ I x ¯ I bar(x)in I\bar{x} \in Ix¯I, then for every.
convex function g : I R g : I R g:I rarrRg: I \rightarrow \mathbb{R}g:IR and for every g g ggg-convex dominated function f f fff : : I R : I R :I rarrR: I \rightarrow \mathbb{R}:IR, we have :
(11) g ( 1 P n i = 1 n p i x i ) 1 P n i = 1 n p i g ( x i ) | f ( 1 P n i = 1 n p i x i ) 1 P n p i f ( x i ) | g 1 P n i = 1 n p i x i 1 P n i = 1 n p i g x i f 1 P n i = 1 n p i x i 1 P n p i f x i g((1)/(P_(n))sum_(i=1)^(n)p_(i)x_(i))-(1)/(P_(n))sum_(i=1)^(n)p_(i)g(x_(i)) >= |f((1)/(P_(n))sum_(i=1)^(n)p_(i)x_(i))-(1)/(P_(n))p_(i)f(x_(i))|g\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)-\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} g\left(x_{i}\right) \geqslant\left|f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)-\frac{1}{P_{n}} p_{i} f\left(x_{i}\right)\right|g(1Pni=1npixi)1Pni=1npig(xi)|f(1Pni=1npixi)1Pnpif(xi)|.
If the inverse inequalities in (10) hold, then (6) holds.
The proof follows by a similar argument to that in the proof of the previous theorem using the result of J. E. Pecarić([4], Pheorem 1), We omit the details.
By Theorem 2 from [4] we also obtain :
Theorem 5. Let a and p p ppp be two n-tuple of real mumbers such that x i I ( 1 i n ) , x ¯ I , P n 0 x i I ( 1 i n ) , x ¯ I , P n 0 x_(i)in I(1 <= i <= n), bar(x)in I,P_(n) >= 0x_{i} \in I(1 \leqslant i \leqslant n), \bar{x} \in I, P_{n} \geqslant 0xiI(1in),x¯I,Pn0. Then the following sentences are equivalent :
(i) inequality (11) holds for every conver function g : I R g : I R g:I rarrRg: I \rightarrow \mathbb{R}g:IR, for every g-convea-dominated function f : I Z f : I Z f:I rarr Zf: I \rightarrow Zf:IZ and for all monotonic n-tuple x x xxx;
(ii) there exists m ( 1 , 2 , , n ) m ( 1 , 2 , , n ) m in(1,2,dots,n)m \in(1,2, \ldots, n)m(1,2,,n) such that P k 0 ( k < m ) P k 0 ( k < m ) P_(k) <= 0quad(k < m)P_{k} \leqslant 0 \quad(k<m)Pk0(k<m) and P ¯ k 0 ( k > m ) P ¯ k 0 ( k > m ) bar(P)_(k) <= 0(k > m)\bar{P}_{k} \leqslant 0(k>m)P¯k0(k>m), where P ¯ k : P n P k 1 P ¯ k : P n P k 1 bar(P)_(k):P_(n)-P_(k-1)\bar{P}_{k}: P_{n}-P_{k-1}P¯k:PnPk1.
Remark 5 5 5^(@)5^{\circ}5. Let f f fff be as in Corollary 2.2. If p , x p , x p,xp, xp,x satisfy conditions (10) or x x xxx is a monotonic n n nnn-tuple and p p ppp verifies (12), then the following inequality holds:
(13) M / 2 [ ( 1 P n i = 1 n p i x i ) 2 1 P n i = 1 n p i x 2 ] | f ( 1 P n i = 1 n p i x i ) 1 P n i = 1 n p i f ( x i ) | (13) M / 2 1 P n i = 1 n p i x i 2 1 P n i = 1 n p i x 2 f 1 P n i = 1 n p i x i 1 P n i = 1 n p i f x i {:(13)M//2[((1)/(P_(n))sum_(i=1)^(n)p_(i)x_(i))^(2)-(1)/(P_(n))sum_(i=1)^(n)p_(i)x^(2)] >= |f((1)/(P_(n))sum_(i=1)^(n)p_(i)x_(i))-(1)/(P_(n))sum_(i=1)^(n)p_(i)f(x_(i))|:}\begin{equation*} M / 2\left[\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}-\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x^{2}\right] \geqslant\left|f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)-\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)\right| \tag{13} \end{equation*}(13)M/2[(1Pni=1npixi)21Pni=1npix2]|f(1Pni=1npixi)1Pni=1npif(xi)|
Now, we shall give an improvement of Barlow-Marshall-Proschan inequality.
THERREM 6. Let x 1 x m 0 x m + 1 x n ( m ( 1 , , n ) , x i I ( 1 i n , 0 I ) x 1 x m 0 x m + 1 x n ( m ( 1 , , n ) , x i I ( 1 i n , 0 I ) x_(1) <= dots <= x_(m) <= 0 <= x_(m+1) <= dots <= x_(n)(m in(1,dots dots,n:)),x_(i)in I(1 <= i <= n,0in I)x_{1} \leqslant \ldots \leqslant x_{m} \leqslant 0 \leqslant x_{m+1} \leqslant \ldots \leqslant x_{n}(m \in(1, \ldots \ldots, n\rangle), x_{i} \in I(1 \leqslant i \leqslant n, 0 \in I)x1xm0xm+1xn(m(1,,n),xiI(1in,0I) and p p ppp is real n-taple.
(i) Inequality
(14) i = 1 n p i g ( x i ) g ( i = 1 n p i x i ) ( i = 1 n p i 1 ) g ( 0 ) | i = 1 n p i f ( x i ) f ( i = 1 n p i x i ) ( i = 1 n p i 1 ) f ( 0 ) | (14) i = 1 n p i g x i g i = 1 n p i x i i = 1 n p i 1 g ( 0 ) i = 1 n p i f x i f i = 1 n p i x i i = 1 n p i 1 f ( 0 ) {:[(14)sum_(i=1)^(n)p_(i)g(x_(i))-g(sum_(i=1)^(n)p_(i)x_(i))-(sum_(i=1)^(n)p_(i)-1)g(0) >= ],[|sum_(i=1)^(n)p_(i)f(x_(i))-f(sum_(i=1)^(n)p_(i)x_(i))-(sum_(i=1)^(n)p_(i)-1)f(0)|]:}\begin{align*} & \sum_{i=1}^{n} p_{i} g\left(x_{i}\right)-g\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\left(\sum_{i=1}^{n} p_{i}-1\right) g(0) \geqslant \tag{14}\\ & \left|\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\left(\sum_{i=1}^{n} p_{i}-1\right) f(0)\right| \end{align*}(14)i=1npig(xi)g(i=1npixi)(i=1npi1)g(0)|i=1npif(xi)f(i=1npixi)(i=1npi1)f(0)|
holds for every convex function g : I R g : I R g:I rarrRg: I \rightarrow \mathbb{R}g:IR and for every g-convect-dominated function f : I R f : I R f:I rarrRf: I \rightarrow \mathbb{R}f:IR if and only if
(15) 0 P k 1 ( 1 k m ) ; 0 P ¯ k 1 ( m + 1 k n ) (15) 0 P k 1 ( 1 k m ) ; 0 P ¯ k 1 ( m + 1 k n ) {:(15)0 <= P_(k) <= 1(1 <= k <= m);0 <= bar(P)_(k) <= 1(m+1 <= k <= n):}\begin{equation*} 0 \leqslant P_{k} \leqslant 1(1 \leqslant k \leqslant m) ; 0 \leqslant \bar{P}_{k} \leqslant 1(m+1 \leqslant k \leqslant n) \tag{15} \end{equation*}(15)0Pk1(1km);0P¯k1(m+1kn)
(ii) Let i = 1 n p i x i I i = 1 n p i x i I sum_(i=1)^(n)p_(i)x_(i)in I\sum_{i=1}^{n} p_{i} x_{i} \in Ii=1npixiI. Then following the ineuality holds
( ) ( i = 1 n p i 1 ) g ( 0 ) + g ( i = 1 n p i x i ) i = 1 n p i g ( x i ) | ( i = 1 n p i 1 ) f ( 0 ) + f ( i = 1 n p i x i ) i = 1 n p i f ( x i ) | ( ) i = 1 n p i 1 g ( 0 ) + g i = 1 n p i x i i = 1 n p i g x i i = 1 n p i 1 f ( 0 ) + f i = 1 n p i x i i = 1 n p i f x i {:[('")"(sum_(i=1)^(n)p_(i)-1)g(0)+g(sum_(i=1)^(n)p_(i)x_(i))-sum_(i=1)^(n)p_(i)g(x_(i)) >= ],[ >= |(sum_(i=1)^(n)p_(i)-1)f^(')(0)+f(sum_(i=1)^(n)p_(i)x_(i))-sum_(i=1)^(n)p_(i)f(x_(i))|]:}\begin{align*} & \left(\sum_{i=1}^{n} p_{i}-1\right) g(0)+g\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} g\left(x_{i}\right) \geqslant \tag{$\prime$}\\ & \geqslant\left|\left(\sum_{i=1}^{n} p_{i}-1\right) f^{\prime}(0)+f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)\right| \end{align*}()(i=1npi1)g(0)+g(i=1npixi)i=1npig(xi)|(i=1npi1)f(0)+f(i=1npixi)i=1npif(xi)|
if and only if there exists j m j m j <= mj \leqslant mjm such that
(1.6) P i 0 ( i < j ) ; P i I ( j i m ) ; P ¯ i 0 ( i m + 1 ) ; (1.6) P i 0 ( i < j ) ; P i I ( j i m ) ; P ¯ i 0 ( i m + 1 ) ; {:(1.6)P_(i) <= 0(i < j);P_(i) >= I(j <= i <= m); bar(P)_(i) <= 0(i >= m+1);:}\begin{equation*} P_{i} \leqslant 0(i<j) ; P_{i} \geqslant I(j \leqslant i \leqslant m) ; \bar{P}_{i} \leqslant 0(i \geqslant m+1) ; \tag{1.6} \end{equation*}(1.6)Pi0(i<j);PiI(jim);P¯i0(im+1);
or exists j m j m j >= mj \geqslant mjm such that:
(17) P i 0 ( i m ) ; P ¯ i 1 ( j i m + 1 ) ; P ¯ i 0 ( i > j ) . (17) P i 0 ( i m ) ; P ¯ i 1 ( j i m + 1 ) ; P ¯ i 0 ( i > j ) . {:(17)P_(i) <= 0(i <= m); bar(P)_(i) >= 1(j >= i >= m+1); bar(P)_(i) <= 0(i > j).:}\begin{equation*} P_{i} \leqslant 0(i \leqslant m) ; \bar{P}_{i} \geqslant 1(j \geqslant i \geqslant m+1) ; \bar{P}_{i} \leqslant 0(i>j) . \tag{17} \end{equation*}(17)Pi0(im);P¯i1(jim+1);P¯i0(i>j).
The proof follows by Theorem of Barlow-Marshall-Proschan (sce [2] or [4] Corollary 1) and by Lemma 2 for the functional
J ( f ) := i = 1 n p i f ( x i ) f ( i = 1 n p i x i ) ( i = 1 n p i 1 ) f ( 0 ) J ( f ) := i = 1 n p i f x i f i = 1 n p i x i i = 1 n p i 1 f ( 0 ) J(f):=sum_(i=1)^(n)p_(i)f(x_(i))-f(sum_(i=1)^(n)p_(i)x_(i))-(sum_(i=1)^(n)p_(i)-1)f(0)J(f):=\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\left(\sum_{i=1}^{n} p_{i}-1\right) f(0)J(f):=i=1npif(xi)f(i=1npixi)(i=1npi1)f(0)
We omit the details.
Remark 6 6 6^(@)6^{\circ}6. Let f C 2 [ a , b ] , M = sup t [ a , b ] | f ( t ) | f C 2 [ a , b ] , M = sup t [ a , b ] f ( t ) f inC^(2)[a,b],M=s u p_(t in[a,b])|f^('')(t)|f \in \mathscr{C}^{2}[a, b], M=\sup _{t \in[a, b]}\left|f^{\prime \prime}(t)\right|fC2[a,b],M=supt[a,b]|f(t)| and x i I ( 1 i n ) x i I ( 1 i n ) x_(i)in I(1 <= i <= n)x_{i} \in I(1 \leqslant i \leqslant n)xiI(1in) be as above. If p i ( 1 i n ) p i ( 1 i n ) p_(i)(1 <= i <= n)p_{i}(1 \leqslant i \leqslant n)pi(1in) verifies (15) we have:
(19) M 2 [ i = 1 n p i x i 2 ( i = 1 n p i x i ) 2 ] ⩾∣ i = 1 n p i f ( x i ) f ( i = 1 n p i x i ) ( i = 1 n p i 1 ) f ( 0 ) . (19) M 2 i = 1 n p i x i 2 i = 1 n p i x i 2 ⩾∣ i = 1 n p i f x i f i = 1 n p i x i i = 1 n p i 1 f ( 0 ) . {:[(19)M2{:[sum_(i=1)^(n)p_(i)x_(i)^(2)-(sum_(i=1)^(n)p_(i)x_(i))^(2)]⩾∣sum_(i=1)^(n)p_(i)f(x_(i))-:}],[-f(sum_(i=1)^(n)p_(i)x_(i))-(sum_(i=1)^(n)p_(i)-1)f(0)∣.]:}\begin{align*} M 2 & {\left[\sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{2}\right] \geqslant \mid \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-} \tag{19}\\ & -f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\left(\sum_{i=1}^{n} p_{i}-1\right) f(0) \mid . \end{align*}(19)M2[i=1npixi2(i=1npixi)2]⩾∣i=1npif(xi)f(i=1npixi)(i=1npi1)f(0).
Let i = 1 n p i x i I i = 1 n p i x i I sum_(i=1)^(n)p_(i)x_(i)in I\sum_{i=1}^{n} p_{i} x_{i} \in Ii=1npixiI and p i ( 1 i n ) p i ( 1 i n ) p_(i)(1 <= i <= n)p_{i}(1 \leqslant i \leqslant n)pi(1in) satisfy (16) or (17), then
( ) M / 2 [ ( i = 1 n p i x i ) 2 i = 1 n p i x i 2 ] | ( i = 1 n p i 1 ) f ( 0 ) + 1 i + f ( i = 1 n p i x i ) i = 1 n p i f ( x i ) ( ) M / 2 i = 1 n p i x i 2 i = 1 n p i x i 2 i = 1 n p i 1 f ( 0 ) + 1 i + f i = 1 n p i x i i = 1 n p i f x i {:[('")"M//2[(sum_(i=1)^(n)p_(i)x_(i))^(2)-sum_(i=1)^(n)p_(i)x_(i)^(2)] >= |(sum_(i=1)^(n)p_(i)-1)f(0)+(1)/(i):}],[+f(sum_(i=1)^(n)p_(i)x_(i))-sum_(i=1)^(n)p_(i)f(x_(i))∣]:}\begin{gather*} M / 2\left[\left(\sum_{i=1}^{n} p_{i} x_{i}\right)^{2}-\sum_{i=1}^{n} p_{i} x_{i}^{2}\right] \geqslant \left\lvert\,\left(\sum_{i=1}^{n} p_{i}-1\right) f(0)+\frac{1}{i}\right. \tag{$\prime$}\\ +f\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \mid \end{gather*}()M/2[(i=1npixi)2i=1npixi2]|(i=1npi1)f(0)+1i+f(i=1npixi)i=1npif(xi)
Now, let H H HHH be a finite nonempty sel of positive integers. If p i > 0 p i > 0 p_(i) > 0p_{i}>0pi>0, x i [ a , b ] x i [ a , b ] x_(i)in[a,b]x_{i} \in[a, b]xi[a,b] and f f fff is a real function defined on [ a , b ] [ a , b ] [a,b][a, b][a,b], let us denote :
P ( H , f ) := ( i H p i ) f ( i H p i x i i H p i ) i H p i f ( x i ) . P ( H , f ) := i H p i f i H p i x i i H p i i H p i f x i . P(H,f):=(sum_(i in H)p_(i))f((sum_(i in H)p_(i)x_(i))/(sum_(i in H)p_(i)))-sum_(i in H)p_(i)f(x_(i)).P(H, f):=\left(\sum_{i \in H} p_{i}\right) f\left(\frac{\sum_{i \in H} p_{i} x_{i}}{\sum_{i \in H} p_{i}}\right)-\sum_{i \in H} p_{i} f\left(x_{i}\right) .P(H,f):=(iHpi)f(iHpixiiHpi)iHpif(xi).
P.M. Vasić and Z Z ZZZ. Mijalković have proved in [ 5 ] that if H , L H , L H,LH, LH,L are finite nonempty set of positive integers, II n I 0 , p x > 0 , x k [ a , b ] n I 0 , p x > 0 , x k [ a , b ] nI_( >= )!=0,p_(x) > 0,x_(k)in[a,b]n I_{\geqslant} \neq 0, p_{x}>0, x_{k} \in[a, b]nI0,px>0,xk[a,b], k H L k H L k in H uu Lk \in H \cup LkHL and f f fff is convex on [ a , b ] [ a , b ] [a,b][a, b][a,b], then
(20) F ( H L , f ) H ( H , f ) + F ( L , f ) . (20) F ( H L , f ) H ( H , f ) + F ( L , f ) . {:(20)F(H uu L","f) >= H(H","f)+F(L","f).:}\begin{equation*} F(H \cup L, f) \geqslant H(H, f)+F(L, f) . \tag{20} \end{equation*}(20)F(HL,f)H(H,f)+F(L,f).
We give the following inprovement of this fact.
Theorem 7. Let g g ggg be a given convex function on [ a , b ] [ a , b ] [a,b][a, b][a,b] and f : [ a f : [ a f:[af:[af:[a, b ] R b ] R b]rarrRb] \rightarrow \mathbb{R}b]R be g g ggg-convex-dominated. Then for every ω k [ a , b ] , p k > 0 ( k Π L ) ω k [ a , b ] , p k > 0 ( k Π L ) omega_(k)in[a,b],p_(k) > 0(k in Pi uu L)\omega_{k} \in[a, b], p_{k}>0(k \in \Pi \cup L)ωk[a,b],pk>0(kΠL), we have the inequallity :
(21) F ( H L , g ) F ( H , g ) F ( L , g ) | F ( H L , f ) F ( H , f ) F ( L , f ) | F ( H L , g ) F ( H , g ) F ( L , g ) | F ( H L , f ) F ( H , f ) F ( L , f ) | F(H uu L,g)-F(H,g)-F(L,g) >= |F(H uu L,f)-F(H,f)-F(L,f)|F(H \cup L, g)-F(H, g)-F(L, g) \geqslant|F(H \cup L, f)-F(H, f)-F(L, f)|F(HL,g)F(H,g)F(L,g)|F(HL,f)F(H,f)F(L,f)|.
The proof follows by inequality (20) and by Lemma 2.
Remark 7 . N f C 2 [ a , b ] , M = sup i U , b j f ( l ) , δ H , L ( x , p ) := P H P L P H L 7 . N f C 2 [ a , b ] , M = sup i U , b j f ( l ) , δ H , L ( x , p ) := P H P L P H L 7^(@).Nf inC^(2)[a,b],M=s u p_(i in U,b_(j))f^('')(l),delta_(H,L)(x,p):=(P_(H)P_(L))/(P_(H uu L))7^{\circ} . \mathbb{N} f \in C^{2}[a, b], M=\sup _{i \in U, b_{j}} f^{\prime \prime}(l), \delta_{H, L}(x, p):=\frac{P_{H} P_{L}}{P_{H \cup L}}7.NfC2[a,b],M=supiU,bjf(l),δH,L(x,p):=PHPLPHL
( A H ( x , p ) A L ( x , p ) ) 2 A H ( x , p ) A L ( x , p ) 2 (A_(H)(x,p)-A_(L)(x,p))^(2)\left(A_{H}(x, p)-A_{L}(x, p)\right)^{2}(AH(x,p)AL(x,p))2 where P H := i H p i P H := i H p i P_(H):=sum_(i in H)p_(i)P_{H}:=\sum_{i \in H} p_{i}PH:=iHpi and A H := 1 P H i H p i x i A H := 1 P H i H p i x i A_(H):=(1)/(P_(H))sum_(i in H)p_(i)x_(i)A_{H}:=\frac{1}{P_{H}} \sum_{i \in H} p_{i} x_{i}AH:=1PHiHpixi we obtain the inequality :
(22) | F ( π L , f ) F ( H , f ) F ( L , f ) | M / 2 δ n , L ( x , p ) (22) | F ( π L , f ) F ( H , f ) F ( L , f ) | M / 2 δ n , L ( x , p ) {:(22)|F(pi uu L","f)-F(H","f)-F(L","f)| <= M//2delta_(n,L)(x","p):}\begin{equation*} |F(\pi \cup L, f)-F(H, f)-F(L, f)| \leqslant M / 2 \delta_{n, L}(x, p) \tag{22} \end{equation*}(22)|F(πL,f)F(H,f)F(L,f)|M/2δn,L(x,p)
(see also [1], Theorem 2).
Remark 8 8 8^(@)8^{\circ}8. If in Remarks 2 , 4 , 5 , 7 2 , 4 , 5 , 7 2^(@),4^(@),5^(@),7^(@)2^{\circ}, 4^{\circ}, 5^{\circ}, 7^{\circ}2,4,5,7 we consider [ a , b ] ( 0 , ) [ a , b ] ( 0 , ) [a,b]sub(0,oo)[a, b] \subset(0, \infty)[a,b](0,), f ( t ) := ln t , M = 1 / a 2 f ( t ) := ln t , M = 1 / a 2 f(t):=ln t,M=1//a^(2)f(t):=\ln t, M=1 / a^{2}f(t):=lnt,M=1/a2 or in Remarks 2 τ 2 τ 2^(@)-tau^(@)2^{\circ}-\tau^{\circ}2τ, we put f ( t ) = exp t , M == exp b f ( t ) = exp t , M == exp b f(t)=exp t,M==exp bf(t)=\exp t, M= =\exp bf(t)=expt,M==expb or [ a , b ] ( 0 , ) [ a , b ] ( 0 , ) [a,b]sub(0,oo)[a, b] \subset(0, \infty)[a,b](0,) and f ( t ) := t c , c [ 2 , ) , M = c ( c 1 ) b c 2 f ( t ) := t c , c [ 2 , ) , M = c ( c 1 ) b c 2 f(t):=t^(c),c in[2,oo),M=c(c-1)b^(c-2)f(t):=t^{c}, c \in[2, \infty), M=c(c-1) b^{c-2}f(t):=tc,c[2,),M=c(c1)bc2 we can obtain some interesting inequalities for real numbers (see also [1]). We omit the details.

REFERENCES

  1. Andrica, D. and Ras a, I., The Jensen inquality: refinemenis and applications, L'Analyse Numérique el la Théorie de l'Approximation, 14(1985), 105-108.
  2. Barlow, R. E., Marshall A. W. and Prosehan, F., Sone inequalites for slarshaped and connex functions, Pacific J. Math., 29(1969), 19-42.
  3. Fuchs, L., Anew proof of an inequality of Hardy-Littlewood-Polya, MaL. Tidsskr., B (1947), 53-54.
  4. Pećarić, J. E., Inverse of Jensen-Steffensen's incquality, Glasnik Matematicki, 16(36) (1981), 229-233.
  5. Vasić, P. M. and Mijalkovic, Z., FOn an index set funclion connecled with Jensen inequality, Univ. Beograd, Publ. Elektrolechn, Fak. Ser. Mat. Fiz, No. 544-No.ö76, (1976), 110 112 110 112 110-112110-112110112.
Received 10.V1.1989
Scoda Gonerdă Läile Herallane, 1600 Bălle Merculane Jud. Curros-Severin
Scode Generala Mchadia 161: Mehadia
Jud. Carus-Severin