The concavity of some special functions

Authors

  • Dorel I. Duca Babes-Bolyai University of Cluj-Napoca, Romania

DOI:

https://doi.org/10.33993/jnaat291-653
Abstract views: 199

Abstract

Not available.

Downloads

Download data is not yet available.

References

Bazaraa, M. S., Sherali, H.D. and Shetty, C. M., Nonlinear Programming: Theory and, Algorithm, 2nd edition, John Wiley and Sons, NewYork, 1993.

P. Benson, H.B.,Concave Minimization: Theory, Applications, and Algorithms. Handbook of Global Optimization,Edited by R.Horst and P.M.Pardalos, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 43-148, 1995 https://doi.org/10.1007/978-1-4615-2025-2_3 DOI: https://doi.org/10.1007/978-1-4615-2025-2_3

Benson, H. B., and Boger, G.M., Multiplicative Programming Problems:- Analgsys and, Efficient Point Search Heuristic, Journal of optimization Theory and Applications, 94, no. 2, pp. 487-510, 1997, https://doi.org/10.1023/a:1022600232285 DOI: https://doi.org/10.1023/A:1022600232285

Ducu, D.I., A Special Class of Real Concave Functions (to appear).

Mangasarian, O. L., Nonlinear Programming, McGraw-Hill Book Company, New York,1969.

Rockafellar, T.R., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

Downloads

Published

2000-02-01

How to Cite

Duca, D. I. (2000). The concavity of some special functions. Rev. Anal. Numér. Théor. Approx., 29(1), 43–47. https://doi.org/10.33993/jnaat291-653

Issue

Section

Articles