Convexité au sens direct ou inverse et applications dans l'optimisation vectorielle
Direct or inverse convexity and applications in vector optimization
DOI:
https://doi.org/10.33993/jnaat291-656Abstract
(in English) The aim of this paper is to study vector optimization poblems involving objective functions which are convex in some direct or inverse sense (i.e. a special class of cone-quasiconvex functions). In particular, it is shown that the image of the objective function is a cone-convex set, property which is important from the scalarization point of view in vector optimization.
(in French) Le but de cet article est d'etudier les problemes d'optimisation vectorielles ayant des fonctions objectifs convexes au sens direct ou inverse. Il s'agit notamment de donner des conditions suffisantes pour que l'image d'un ensemble convexe par des fonction objectifs cone-quasiconvexes soit un ensemble cone-convexe, propriete qui joue un role important dans la plupart des methodes de scalarisation utilisees dans l'optimisation vectorielle.
Downloads
References
Dolecki, S., Malivert, C., Stability of Efficient Sets: Continuity of Mobile Polarities, Nonlinear Analysis, Theory, Methods & Appl., 12 (1988) 12, 1461-1486, https://doi.org/10.1016/0362-546x(88)90091-0 DOI: https://doi.org/10.1016/0362-546X(88)90091-0
Luc, D. T., Theory of vector optimization, Lecture Notes in Econ. and Math. Systems, vol. 319, Springer Verlag, Berlin, 1989. DOI: https://doi.org/10.1007/978-3-642-50280-4
Luc, D. T., On Three Concepts of Quasiconvexity in Vector Optimization, Acta Mathematica Vietnamica, 15 (1990) 1, 3-9.
Podinowski, V. V. et Nogin, V. D., Solutions Pareto-optimales des problèmes multicritères (en russe), Nauka, Moscou, 1982.
Popovici, N., Contribution à l'optimisation vectorielle, Thèse de doctorat, Université de Limoges, 1995.
Popovici, N., Sur une notion abstraite de quasi-convexité, Rev. d'Anal. Num er. et de Th eorie de l'Approx., 26 (1997) 1-2, 191-196.
Rothblum, U. G., Ratios of affine functions, Mathematical Programming, 32 (1985), 357-365, https://doi.org/10.1007/bf01582054 DOI: https://doi.org/10.1007/BF01582054
Yu, P.L., Multiple criteria decision making: concepts, techniques and extensions, Plenum Press, New York and London, 1985.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.