The optimal efficiency index of a class of Hermite iterative methods with two steps

Authors

  • Ion Păvăloiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy

Abstract

Not available.

Downloads

Download data is not yet available.

References

Brent, R., Winograd, S., Wolfe, F., Optimal Iterative Processes for Root-Finding, Numer. Math., 20, pp.327-341, 1973, https://doi.org/10.1007/bf01402555

Coman, Gh., Some Practical Approximation Methods for nonlinear Equations, Matematica-Revue d'Analyse Numérique et de Théorie de l'Approximation, 11, no.1-2, pp.11-48, 1982.

Kung, H.T., Traub, J.F., Optimal Order and Efficiency for Iterations with Two Evaluations, SIAM J. Numer. Anal., 13, no.1, pp. 84-99, 1976, https://doi.org/10.1137/0713010

Ostrowski, A.M., Solution of Equation and Systems of Equations, Academic Press, New York and London, 1966.

Păvăloiu, I., Bilateral Approximation for the Soltuions of Scalar Equations, Revue D'Analyse Numérique et de Théorie de l'Approximation, 23, 1, pp.95-100, 1994.

Păvăloiu, I., Optimal Problems Concerning Interpolation Methods of Solutions of Equations, Publ. Inst. Math. 52 (66), pp.113-126, 1992.

Păvăloiu, I., Optimal Efficiency Index for Iterative Methods of Interpolatory Type, Computer Science Journal of Moldova, 5, nr.1 (13), pp.20-43, 1997.

Traub, J.F., Iterative methods for slution of equations, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1964.

Turowicz, B.A., Sur les derivées d'ordre superieur d'une fonction inverse, Ann.Polon. Math., 8, pp.265-269, 1960, https://doi.org/10.4064/ap-8-3-265-269

Downloads

Published

2000-02-01

How to Cite

Păvăloiu, I. (2000). The optimal efficiency index of a class of Hermite iterative methods with two steps. Rev. Anal. Numér. Théor. Approx., 29(1), 83–89. Retrieved from https://ictp.acad.ro/jnaat/journal/article/view/2000-vol29-no1-art8

Issue

Section

Articles