Meyer-König and Zeller operators based on the \(q\)-integers
DOI:
https://doi.org/10.33993/jnaat292-673Abstract
Not available.Downloads
References
Asky, R., Ramanujan's extensions of the Gamma and, Beta functions, Amer. Math. Monthly, 87, pp. 346-359, 1980, https://doi.org/10.1080/00029890.1980.11995033 DOI: https://doi.org/10.1080/00029890.1980.11995033
Bailey., W. N., Generalized, Hypergeometric Series, Hafner, New York, 1972.
Cheney, E. V. and Sharma, A., Bernstein power series, Canad. J. Math., 16, pp.241-253, 1964, https://doi.org/10.4153/cjm-1964-023-1 DOI: https://doi.org/10.4153/CJM-1964-023-1
Cimoca, G. and Lupaş, A., Two generalizations of the Meger-König and Zeller operator, Mathematica (CluJ), 9 (32), pp, 233-240,1967.
Goodman, T. N. T., Oruç, H. and Phillps, G. M. Convexity and generalized Bernstein polynomials, Proc. Edinburgh Math. Soc.,42, pp. 179-190, 1999, https://doi.org/10.1017/s0013091500020101 DOI: https://doi.org/10.1017/S0013091500020101
Lorentz, G. G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
Lupaş, A. and Muller, M. W., Approximation properties of the Mn-operators, Aequationes. Math., 5, pp. 19-37, 1970, https://doi.org/10.1007/bf01819267 DOI: https://doi.org/10.1007/BF01819267
Meyer-König, W. and Zeller, K., Bernsteinsche Potenzreihen, Studia Math., 19, pp. 89-94, 1960, https://doi.org/10.4064/sm-19-1-89-94 DOI: https://doi.org/10.4064/sm-19-1-89-94
Oruç, H. and Phillips, G. M. .A generalization of the Bernstein polynomials, Proc. Edinburgh Math. Soc., 42, pp. 403-413, 1999, https://doi.org/10.1017/s0013091500020332 DOI: https://doi.org/10.1017/S0013091500020332
Phillps, G. N. Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4, pp. 511-518, 1997.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.