A unified treatment of boundary layer and lubrication approximations in viscous fluid mechanics


  • Călin Ioan Gheorghiu Tiberiu Popoviciu, Institute of Numerical Analysis, Romanian Academy, Romania


Abstract views: 257


Not available.


Download data is not yet available.


Ascheson, D. J., Elementary Fluid, Dynamrics, Clarendon Press, Oxford, 1992.

Bender C. M., Orszag, S. A., Advances Mathematical-Methods for scientists and Engineers, Mc Graw-Hill, 1928.

Fowkes, N.D., Mahony, J. J., An Introduction to Mathematical Modelling, John Wiley & Sons, 1994.

Fowler, a.c., Mathematical Models in the Appried, science, Cambridge Univ. Press, 1997.

Gheorghiu, C. I., Kasa, Z., Stan, I., Effects of Surfactants on an Undeformable Drop Initially at Rest, Studia Univ. "Babeş-Bolyai" Mathematica, XXXVIII, 2, 1993,113-126.

Gheorghiu, C.I., On the Behaviour of a Thin Liquid, Layer Flowing Due to Gravity and Surface Tension Gradient, I. Mathematical Aspects, Studia Univ. "Babeş-Bolyai", Mathematica, XLI, no. 4, pp. 47-54, 1996.

Landau, L.D., Lifshitz, E.M., Fluid, Mechanics,2nd, Edition, Pergamon Press,1989.

Levich, Y. G., Physicochemical Hydrodynamics, Prentice Hall, Englewood Cliffs, N.J.,1962.

Lin, C. C., Segel, L. A., Mathematics Applied, to Deterministic Problems in Natural Sciences, Macmillan, London, 1974.

Ockendon, I., Ockendon, J, Viscous Flow, Cambridge Univ. Press, 1995, https://doi.org/10.1017/cbo9781139174206 DOI: https://doi.org/10.1017/CBO9781139174206

Oroveanu, T., Viscous Fluid, Mechanics, Romanian Academy Publishing House,1967 (in Romanian).

Schlichting, H., Boundary Layer Theory, Mc Graw-Hill, 1960.

Wilson, S. K., Davis, S. H., Bankoff, S. G., The unsteady expansion and, contraction of a long two-dimensional vaspour bubble between superheated or subcooled, parallel plates, J. Fluid Mech., vol. 891, pp. 1-27, 1999, https://doi.org/10.1017/s0022112099004516 DOI: https://doi.org/10.1017/S0022112099004516




How to Cite

Gheorghiu, C. I. (2000). A unified treatment of boundary layer and lubrication approximations in viscous fluid mechanics. Rev. Anal. Numér. Théor. Approx., 29(2), 135–138. https://doi.org/10.33993/jnaat292-663