On the numerical evaluation of certain 2-D singular integrals


  • Laura Gori Universita “La Sapienza”, Rome, Italy
  • Laura Lo Cascio Universita “La Sapienza”, Rome, Italy
  • Elisabetta Santi Universita dell’Aquila, Italy


Abstract views: 159


The problem of approximating certain two-dimensional Cauchy principal value integrals is here considered, product integration formulas with multiple nodes are presented and the behaviour of the remainder is analyzed. Next a particular class of cubature rules is generated, having the peculiar property that the set of the nodes holds fixed while their multiplicities vary. Some numerical examples of application of the latter rules are also provided.


Download data is not yet available.


R.A. Cicenia, Numerical integration formulas involving derivatives, J. Inst. Math. Appl. 18 (1976), 79-85, https://doi.org/10.1093/imamat/18.1.79 DOI: https://doi.org/10.1093/imamat/18.1.79

C. Dagnino, S. Perotto and E. Santi, Product formulas based on spline approximation for the numerical evaluation of certain 2-D CPV integrals, Approx. And Optim. (Eds. D.D. Stancu, G. Coman, W.W. Breckener, P. Blaga), Transilvania Press, Cluj-Napoca (1997), 241-250.

W. Gautschi, A survey of Gauss-Christoffel quadrature formulae, G.B. Christoffel (P.L. Butzer and F. Fehèr eds.) Birkhäuser, Basel (1981), 72-147, https://doi.org/10.1007/978-3-0348-5452-8_6 DOI: https://doi.org/10.1007/978-3-0348-5452-8_6

A. Ghizzetti, A. Ossicini, Quadrature formulae, Birkhäuser, Basel 1970. DOI: https://doi.org/10.1007/978-3-0348-5836-6

L. Gori, M.L. Lo Cascio, On an invariance property of the zeros of some s-orthogonal polynomials , Orthogonal polynomials and their applications (Eds. C. Brezinski, L. Gori, A. Ronveaux) J.C. Baltzer AG Scient. Publ. IMACS (1991), 277-280.

L. Gori, C.A. Micchelli, On weight functions which admit explicit Gauss-Turán quadrature formulas, Math Comp. 65 (1996), 1567-1581, https://doi.org/10.1090/s0025-5718-96-00769-7 DOI: https://doi.org/10.1090/S0025-5718-96-00769-7

L. Gori, E. Santi, On the evaluation of Hilbert transform by means of a particular class of Turán type quadrature rules, Numer. Algorithms 10 (1995), 27-39, https://doi.org/10.1007/bf02198294 DOI: https://doi.org/10.1007/BF02198294

G. Monegato, Convergence of product formulas for the numerical evaluation of certain two-dimensional Cauchy principal value integrals, Numer. Math. 43 (1984), 161-173, https://doi.org/10.1007/bf01390121 DOI: https://doi.org/10.1007/BF01390121

P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 213 (1979). DOI: https://doi.org/10.1090/memo/0213

M.A. Sheshko, On the convergence of cubature processes for two-dimensional integrals, Dokl. Akad. Nauk. BSSR 23 (1979), 293-296.

P. Rabinowitz, Convergence results for piecewise linear quadratures for Cauchy principal value integrals, Math. Comp. 51 (1988), 741-747, https://doi.org/10.1090/s0025-5718-1988-0958639-3 DOI: https://doi.org/10.1090/S0025-5718-1988-0958639-3

D.D. Stancu, The remainder of certain linear formulas in two variables, SIAM J. Num. Anal. 1 (1964), 137-163, https://doi.org/10.1137/0701013 DOI: https://doi.org/10.1137/0701013




How to Cite

Gori, L., Cascio, L. L., & Santi, E. (2000). On the numerical evaluation of certain 2-D singular integrals. Rev. Anal. Numér. Théor. Approx., 29(2), 139–149. https://doi.org/10.33993/jnaat292-664