Convex functions of order n on undirected networks
DOI:
https://doi.org/10.33993/jnaat292-665Abstract
In this paper we introduce the convex (nonconcave, polynomial, nonconvex, respective concave) functions of order \(n\) on undirected networks. We study some properties of them. Finally we frame these functions in allure theory introduced by E. Popoviciu (1983). We adopt the definition of network as metric space introduced by P. M. Dearing and R. L. Francis (1974).
Downloads
References
P. M. Dearing, R. L. Francis, A minimax location problem on a network, Transportation Science 8 (1974), 333-343, https://doi.org/10.1287/trsc.8.4.333 DOI: https://doi.org/10.1287/trsc.8.4.333
P. M. Dearing, R. L. Francis, T. J. Lowe, Convex location problems on tree networks, Oper. Res. 24 (1976), 628-634, https://doi.org/10.1287/opre.24.4.628 DOI: https://doi.org/10.1287/opre.24.4.628
M. E. Iacob, Convexity, Approximation and Optimization on Networks, PhD dissertation, Univ. Babeş-Bolyai, Cluj-Napoca, 1997 (in Romanian).
M. Labeé, Essay in network location theory, Cahiers de Centre d'Etudes et Recherche Oper. 27 (1-2), (1985), 7-130.
D. Marian, Properties of the metric polynom of Lagrange type on undirected networks, Proceedings of the Conference on Analysis, Functional Equations, Approximation and Convexity, Cluj-Napoca, 15-16 October (1999), 152-159.
E. Popoviciu, Teoreme de medie din analiza matematică şi legătura lor cu teoria interpolării, Dacia, Cluj, 1972 (in Romanian).
E. Popoviciu, Sur certains propriétés des fonctions quasi-convexes (I), L'Analyse Numer. et la Theor. de l'Approx., 12, 2, (1983), 175-186.
T. Popoviciu, Sur quelques propiétés des fonctions d'une ou de deux variables réelles, Mathematica (Cluj) 8 (1933),1-85.
T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica (Cluj) 10 (1934), 49-54.
T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur (I), Mathematica (Cluj) 12 (1936), 81-92.
T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur (II), Mathematica (Cluj) 12 (1936), 227-233.
T. Popoviciu, Introduction à la théorè des différences divisées, Bull. Math. Soc. Roumaine Sci. 42 (1940), 65-78.
T. Popoviciu, Les Fonctions Convexes, Herman, Actualités Scientifiques et Industrielles, Paris, 1945.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.