The uncentered type incremental unknowns for a singularly perturbed bilocal problem
DOI:
https://doi.org/10.33993/jnaat292-666Abstract
Not available.Downloads
References
Chehab,J.P., A Nonlinear Adaptive Multiresolution Method in Finite Differences with Incremental Unknowns, Modelisation Mathematiques et Analyse Numerique (M²AN) 29 (1995) 4, 451-475, https://doi.org/10.1051/m2an/1995290404511 DOI: https://doi.org/10.1051/m2an/1995290404511
Chehab,J.P., Solution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, Appl. Numer. Math. 21 (1996), 9-42, https://doi.org/10.1016/0168-9274(95)00130-1 DOI: https://doi.org/10.1016/0168-9274(95)00130-1
Chehab,J.P., Miranville, A., Incremental Unknowns on Nonuniform Mesches, Modelisation Mathematiques et Analyse Numerique (M²AN) 32 (1998) 5, 539-577, https://doi.org/10.1051/m2an/1998320505391 DOI: https://doi.org/10.1051/m2an/1998320505391
Chehab,J.P., Miranville, A., Induced Hierarchical Preconditioners: The Finite Difference Case, Publication ANO-371 (1997).
Chen, M., Temam, R., Incremental Unknowns for Solving Partial Differential Equations, Numer. Math. 59 (1991), 255-271, https://doi.org/10.1007/bf01385779 DOI: https://doi.org/10.1007/BF01385779
Chen, M., Temam, R., Incremental Unknowns in Finite Differences: Condition Number of the Matrix, SIAM J. on Matrix Analysis and Applications, 14 (1993) 2, 432-455, https://doi.org/10.1137/0614031 DOI: https://doi.org/10.1137/0614031
Chen, M., Temam, R., Incremental Unknowns for Solving Convection-Diffusion Equations, (1993). DOI: https://doi.org/10.1016/0168-9274(93)90060-5
Chen, M., Miranville, A., Temam, R., Incremental Unknowns in Finite diferences in Space Dimension 3, Computational and Applied Mathematics, 14 (1995) 3, 219-252.
Garcia, S., These de l'Univesite de Paris XI, Orsay, 1992.
Hemker, P.W., A Numerical Study of Stiff Two-Point Boundary Problems, Amsterdam, 1977.
Mustata, C., Muresan, A., Mustata, R., Approximation by Spline Functions of the Solution of a Singularly Perturbed Bilocal Problem, Revue d'Anal. Numer. et de Theorie de l'Approx., Tome 27, Nr. 2, 1998, pp.297-308.
Temam, R., Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal. 21 (1990) 1, 154-178, https://doi.org/10.1137/0521009 DOI: https://doi.org/10.1137/0521009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.