Single-valued and multi-valued Meir-Keeler type operators
DOI:
https://doi.org/10.33993/jnaat301-684Abstract
The purpose of this paper is to present several xed point results for some single-valued and multi-valued Meir-Keeler type operators.Downloads
References
G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Acad. Publ., Dordrecht, 1994. DOI: https://doi.org/10.1007/978-94-015-8149-3
J. Jachymski, Continuous dependence of attractors of iterated function systems, J. Math. Anal. Appl., 198 (1996), 221-226, https://doi.org/10.1006/jmaa.1996.0077 DOI: https://doi.org/10.1006/jmaa.1996.0077
J. Jachymski, Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194 (1995), 293-303, https://doi.org/10.1006/jmaa.1995.1299 DOI: https://doi.org/10.1006/jmaa.1995.1299
J. Jachymski, Equivalent of some contractivity properties over metrical structures, Proc. A.M.S., 125 (1997), 2327-2335, https://doi.org/10.1090/s0002-9939-97-03853-7 DOI: https://doi.org/10.1090/S0002-9939-97-03853-7
A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326-329, https://doi.org/10.1016/0022-247x(69)90031-6 DOI: https://doi.org/10.1016/0022-247X(69)90031-6
S. B. Nadler, jr., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488, https://doi.org/10.2140/pjm.1969.30.475 DOI: https://doi.org/10.2140/pjm.1969.30.475
I. A. Rus, Stability of attractor of a ϕ-contractions system, Babeş-Bolyai University, Seminar on Fixed Point Theory, 3 (1998), 31-34.
H. K. Xu, ε-chanability and fixed points of set-valued mappings in metric spaces, Math. Japonica, 39 (1994), 353-356.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.