On the White's algorithm for fractional programming
DOI:
https://doi.org/10.33993/jnaat301-688Abstract
In this note we extend for fractional case a method due to White for solving a problem of maximizing over a finite set a function with some special "convexity" properties. Three algorithms applied to a transformation of the initial problem into a maximizing an auxilliary non-fractional function over a bi-product set are given.Downloads
References
B. Bereanu, On stochastic linear programming, I: Distribution problems. A simple random variable, Rev. Roumaine Math. Pures Appl., 8 (1963), 683-697.
A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Nav. Res. Log. Quart., 9 (1962), 181-186. DOI: https://doi.org/10.1002/nav.3800090303
W. Dinkelbach, On nonlinear fractional programming, Management Sci., 13 (1967), 492-498, https://doi.org/10.1287/mnsc.13.7.492 DOI: https://doi.org/10.1287/mnsc.13.7.492
I. M. Stancu-Minasian and S. Tigan, On some fractional programming models occurring in minimum risk problems, Lecture Notes in Economics and Mathematical Systems, 345, Managing Editors: M. Beckmann, W. Krelle, A. Cambini, E. Castagnoli, L. Martein, P. Mazoleni, S. Schaible (Eds.), Proc. of the International Workshop on "Generalized Concavity and Economic Applications", Univ. of Pisa, 1988, 295-324, https://doi.org/10.1007/978-3-642-46709-7_22 DOI: https://doi.org/10.1007/978-3-642-46709-7_22
S. Tigan, On some procedure for solving fractional max-min problems, Rev. Anal. Numér. Théor. Approx., 17 (1988), 73-91.
S. Tigan and I. M. Stancu-Minasian, Methods for solving stochastic bilinear fractional max-min problems, Recherche Operationnelle/Operations Research, 30 (1996), 81-98, https://doi.org/10.1051/ro/1996300100811 DOI: https://doi.org/10.1051/ro/1996300100811
S. Tigan, On the maximizing a fractional function over a finite set, in Proceedings of the "Tiberiu Popoviciu" Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca Univ. Babes-Bolyai, E. Popoviciu (ed.), editura SRIMA, Cluj-Napoca, Romania, 2000, 263-270.
D. J. White, A convex form of the quadratic assignment problem, European J. Oper. Res., 65 (1993), 407-416, https://doi.org/10.1016/0377-2217(93)90120-c DOI: https://doi.org/10.1016/0377-2217(93)90120-C
D. J. White, Maximizing a function over a finite set of actions, Technical note, Management Science, 42 (1996), 624-627, https://doi.org/10.1287/mnsc.42.4.624 DOI: https://doi.org/10.1287/mnsc.42.4.624
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Journal of Numerical Analysis and Approximation Theory
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.